961 resultados para Variance analysis
Resumo:
BACKGROUND Persons with schizophrenia and related disorders may be particularly sensitive to a number of determinants of service use, including those related with illness, socio-demographic characteristics and organizational factors. The objective of this study is to identify factors associated with outpatient contacts at community mental health services of patients with schizophrenia or related disorders. METHODS This cross-sectional study analyzed 1097 patients. The main outcome measure was the total number of outpatient consultations during one year. Independent variables were related to socio-demographic, clinical and use of service factors. Data were collected from clinical records. RESULTS The multilevel linear regression model explained 46.35% of the variance. Patients with significantly more contacts with ambulatory services were not working and were receiving welfare benefits (p = 0.02), had no formal education (p = 0.02), had a global level of severity of two or three (four being the most severe) (p < 0.001), with one or more inpatient admissions (p < 0.001), and in contact with both types of professional (nurses and psychiatrists) (p < 0.001). The patients with the fewest ambulatory contacts were those with diagnoses of persistent delusional disorders (p = 0.04) and those who were attended by four of the 13 psychiatrists (p < 0.001). CONCLUSIONS As expected, the variables that explained the use of community service could be viewed as proxies for severity of illness. The most surprising finding, however, was that a group of four psychiatrists was also independently associated with use of ambulatory services by patients with schizophrenia or related disorders. More research is needed to carefully examine how professional support networks interact to affect use of mental health.
Resumo:
General Introduction This thesis can be divided into two main parts :the first one, corresponding to the first three chapters, studies Rules of Origin (RoOs) in Preferential Trade Agreements (PTAs); the second part -the fourth chapter- is concerned with Anti-Dumping (AD) measures. Despite wide-ranging preferential access granted to developing countries by industrial ones under North-South Trade Agreements -whether reciprocal, like the Europe Agreements (EAs) or NAFTA, or not, such as the GSP, AGOA, or EBA-, it has been claimed that the benefits from improved market access keep falling short of the full potential benefits. RoOs are largely regarded as a primary cause of the under-utilization of improved market access of PTAs. RoOs are the rules that determine the eligibility of goods to preferential treatment. Their economic justification is to prevent trade deflection, i.e. to prevent non-preferred exporters from using the tariff preferences. However, they are complex, cost raising and cumbersome, and can be manipulated by organised special interest groups. As a result, RoOs can restrain trade beyond what it is needed to prevent trade deflection and hence restrict market access in a statistically significant and quantitatively large proportion. Part l In order to further our understanding of the effects of RoOs in PTAs, the first chapter, written with Pr. Olivier Cadot, Celine Carrère and Pr. Jaime de Melo, describes and evaluates the RoOs governing EU and US PTAs. It draws on utilization-rate data for Mexican exports to the US in 2001 and on similar data for ACP exports to the EU in 2002. The paper makes two contributions. First, we construct an R-index of restrictiveness of RoOs along the lines first proposed by Estevadeordal (2000) for NAFTA, modifying it and extending it for the EU's single-list (SL). This synthetic R-index is then used to compare Roos under NAFTA and PANEURO. The two main findings of the chapter are as follows. First, it shows, in the case of PANEURO, that the R-index is useful to summarize how countries are differently affected by the same set of RoOs because of their different export baskets to the EU. Second, it is shown that the Rindex is a relatively reliable statistic in the sense that, subject to caveats, after controlling for the extent of tariff preference at the tariff-line level, it accounts for differences in utilization rates at the tariff line level. Finally, together with utilization rates, the index can be used to estimate total compliance costs of RoOs. The second chapter proposes a reform of preferential Roos with the aim of making them more transparent and less discriminatory. Such a reform would make preferential blocs more "cross-compatible" and would therefore facilitate cumulation. It would also contribute to move regionalism toward more openness and hence to make it more compatible with the multilateral trading system. It focuses on NAFTA, one of the most restrictive FTAs (see Estevadeordal and Suominen 2006), and proposes a way forward that is close in spirit to what the EU Commission is considering for the PANEURO system. In a nutshell, the idea is to replace the current array of RoOs by a single instrument- Maximum Foreign Content (MFC). An MFC is a conceptually clear and transparent instrument, like a tariff. Therefore changing all instruments into an MFC would bring improved transparency pretty much like the "tariffication" of NTBs. The methodology for this exercise is as follows: In step 1, I estimate the relationship between utilization rates, tariff preferences and RoOs. In step 2, I retrieve the estimates and invert the relationship to get a simulated MFC that gives, line by line, the same utilization rate as the old array of Roos. In step 3, I calculate the trade-weighted average of the simulated MFC across all lines to get an overall equivalent of the current system and explore the possibility of setting this unique instrument at a uniform rate across lines. This would have two advantages. First, like a uniform tariff, a uniform MFC would make it difficult for lobbies to manipulate the instrument at the margin. This argument is standard in the political-economy literature and has been used time and again in support of reductions in the variance of tariffs (together with standard welfare considerations). Second, uniformity across lines is the only way to eliminate the indirect source of discrimination alluded to earlier. Only if two countries face uniform RoOs and tariff preference will they face uniform incentives irrespective of their initial export structure. The result of this exercise is striking: the average simulated MFC is 25% of good value, a very low (i.e. restrictive) level, confirming Estevadeordal and Suominen's critical assessment of NAFTA's RoOs. Adopting a uniform MFC would imply a relaxation from the benchmark level for sectors like chemicals or textiles & apparel, and a stiffening for wood products, papers and base metals. Overall, however, the changes are not drastic, suggesting perhaps only moderate resistance to change from special interests. The third chapter of the thesis considers whether Europe Agreements of the EU, with the current sets of RoOs, could be the potential model for future EU-centered PTAs. First, I have studied and coded at the six-digit level of the Harmonised System (HS) .both the old RoOs -used before 1997- and the "Single list" Roos -used since 1997. Second, using a Constant Elasticity Transformation function where CEEC exporters smoothly mix sales between the EU and the rest of the world by comparing producer prices on each market, I have estimated the trade effects of the EU RoOs. The estimates suggest that much of the market access conferred by the EAs -outside sensitive sectors- was undone by the cost-raising effects of RoOs. The chapter also contains an analysis of the evolution of the CEECs' trade with the EU from post-communism to accession. Part II The last chapter of the thesis is concerned with anti-dumping, another trade-policy instrument having the effect of reducing market access. In 1995, the Uruguay Round introduced in the Anti-Dumping Agreement (ADA) a mandatory "sunset-review" clause (Article 11.3 ADA) under which anti-dumping measures should be reviewed no later than five years from their imposition and terminated unless there was a serious risk of resumption of injurious dumping. The last chapter, written with Pr. Olivier Cadot and Pr. Jaime de Melo, uses a new database on Anti-Dumping (AD) measures worldwide to assess whether the sunset-review agreement had any effect. The question we address is whether the WTO Agreement succeeded in imposing the discipline of a five-year cycle on AD measures and, ultimately, in curbing their length. Two methods are used; count data analysis and survival analysis. First, using Poisson and Negative Binomial regressions, the count of AD measures' revocations is regressed on (inter alia) the count of "initiations" lagged five years. The analysis yields a coefficient on measures' initiations lagged five years that is larger and more precisely estimated after the agreement than before, suggesting some effect. However the coefficient estimate is nowhere near the value that would give a one-for-one relationship between initiations and revocations after five years. We also find that (i) if the agreement affected EU AD practices, the effect went the wrong way, the five-year cycle being quantitatively weaker after the agreement than before; (ii) the agreement had no visible effect on the United States except for aone-time peak in 2000, suggesting a mopping-up of old cases. Second, the survival analysis of AD measures around the world suggests a shortening of their expected lifetime after the agreement, and this shortening effect (a downward shift in the survival function postagreement) was larger and more significant for measures targeted at WTO members than for those targeted at non-members (for which WTO disciplines do not bind), suggesting that compliance was de jure. A difference-in-differences Cox regression confirms this diagnosis: controlling for the countries imposing the measures, for the investigated countries and for the products' sector, we find a larger increase in the hazard rate of AD measures covered by the Agreement than for other measures.
Resumo:
When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of "degrees of membership" between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix - the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called "fuzzy multiple correspondence analysis", suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.
Resumo:
The emergence of host-races within aphids may constitute an obstacle to pest management by means of plant resistance. There are examples of host-races within cereals aphids, but their occurrence in Rose Grain Aphid, Metopolophium dirhodum (Walker, 1849), has not been reported yet. In this work, RAPD markers were used to assess effects of the hosts and geographic distance on the genetic diversity of M. dirhodum lineages. Twenty-three clones were collected on oats and wheat in twelve localitites of southern Brazil. From twenty-seven primers tested, only four primers showed polymorphisms. Fourteen different genotypes were revealed by cluster analysis. Five genotypes were collected only on wheat; seven only on oats and two were collected in both hosts. Genetic and geographical distances among all clonal lineages were not correlated. Analysis of molecular variance showed that some molecular markers are not randomly distributed among clonal lineages collected on oats and on wheat. These results suggest the existence of host-races within M. dirhodum, which should be further investigated using a combination of ecological and genetic data.
Resumo:
We develop a general error analysis framework for the Monte Carlo simulationof densities for functionals in Wiener space. We also study variancereduction methods with the help of Malliavin derivatives. For this, wegive some general heuristic principles which are applied to diffusionprocesses. A comparison with kernel density estimates is made.
Resumo:
Although correspondence analysis is now widely available in statistical software packages and applied in a variety of contexts, notably the social and environmental sciences, there are still some misconceptions about this method as well as unresolved issues which remain controversial to this day. In this paper we hope to settle these matters, namely (i) the way CA measures variance in a two-way table and how to compare variances between tables of different sizes, (ii) the influence, or rather lack of influence, of outliers in the usual CA maps, (iii) the scaling issue and the biplot interpretation of maps,(iv) whether or not to rotate a solution, and (v) statistical significance of results.
Resumo:
The spatial variability of strongly weathered soils under sugarcane and soybean/wheat rotation was quantitatively assessed on 33 fields in two regions in São Paulo State, Brazil: Araras (15 fields with sugarcane) and Assis (11 fields with sugarcane and seven fields with soybean/wheat rotation). Statistical methods used were: nested analysis of variance (for 11 fields), semivariance analysis and analysis of variance within and between fields. Spatial levels from 50 m to several km were analyzed. Results are discussed with reference to a previously published study carried out in the surroundings of Passo Fundo (RS). Similar variability patterns were found for clay content, organic C content and cation exchange capacity. The fields studied are quite homogeneous with respect to these relatively stable soil characteristics. Spatial variability of other characteristics (resin extractable P, pH, base- and Al-saturation and also soil colour), varies with region and, or land use management. Soil management for sugarcane seems to have induced modifications to greater depths than for soybean/wheat rotation. Surface layers of soils under soybean/wheat present relatively little variation, apparently as a result of very intensive soil management. The major part of within-field variation occurs at short distances (< 50 m) in all study areas. Hence, little extra information would be gained by increasing sampling density from, say, 1/km² to 1/50 m². For many purposes, the soils in the study regions can be mapped with the same observation density, but residual variance will not be the same in all areas. Bulk sampling may help to reveal spatial patterns between 50 and 1.000 m.
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.
Resumo:
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Resumo:
A new drift compensation method based on Common Principal Component Analysis (CPCA) is proposed. The drift variance in data is found as the principal components computed by CPCA. This method finds components that are common for all gasses in feature space. The method is compared in classification task with respect to the other approaches published where the drift direction is estimated through a Principal Component Analysis (PCA) of a reference gas. The proposed new method ¿ employing no specific reference gas, but information from all gases ¿has shown the same performance as the traditional approach with the best-fitted reference gas. Results are shown with data lasting 7-months including three gases at different concentrations for an array of 17 polymeric sensors.
Resumo:
With the trend in molecular epidemiology towards both genome-wide association studies and complex modelling, the need for large sample sizes to detect small effects and to allow for the estimation of many parameters within a model continues to increase. Unfortunately, most methods of association analysis have been restricted to either a family-based or a case-control design, resulting in the lack of synthesis of data from multiple studies. Transmission disequilibrium-type methods for detecting linkage disequilibrium from family data were developed as an effective way of preventing the detection of association due to population stratification. Because these methods condition on parental genotype, however, they have precluded the joint analysis of family and case-control data, although methods for case-control data may not protect against population stratification and do not allow for familial correlations. We present here an extension of a family-based association analysis method for continuous traits that will simultaneously test for, and if necessary control for, population stratification. We further extend this method to analyse binary traits (and therefore family and case-control data together) and accurately to estimate genetic effects in the population, even when using an ascertained family sample. Finally, we present the power of this binary extension for both family-only and joint family and case-control data, and demonstrate the accuracy of the association parameter and variance components in an ascertained family sample.
Resumo:
Soil penetration resistance (PR) is a measure of soil compaction closely related to soil structure and plant growth. However, the variability in PR hampers the statistical analyses. This study aimed to evaluate the variability of soil PR on the efficiency of parametric and nonparametric analyses in indentifying significant effects of soil compaction and to classify the coefficient of variation of PR into low, medium, high and very high. On six dates, the PR of a typical dystrophic Red Ultisol under continuous no-tillage for 16 years was measured. Three tillage and/or traffic conditions were established with the application of: (i) no chiseling or additional traffic, (ii) additional compaction, and (iii) chiseling. On each date, the nineteen PR data (measured at every 1.5 cm to a depth of 28.5 cm) were grouped in layers with different thickness. In each layer, the treatment effects were evaluated by variance (ANOVA) and Kruskal-Wallis analyses in a completely randomized design, and the coefficients of variation of all analyses were classified (low, intermediate, high and very high). The ANOVA performed better in discriminating the compaction effects, but the rejection rate of null hypothesis decreased from 100 to 80 % when the coefficient of variation increased from 15 to 26 %. The values of 15 and 26 % were the thresholds separating the low/intermediate and the high/very high coefficient variation classes of PR in this Ultisol.
Resumo:
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.