983 resultados para VC-IP
Resumo:
Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.
Resumo:
Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.
Resumo:
In this study, we aimed to evaluate the effects of exenatide (EXE) treatment on exocrine pancreas of nonhuman primates. To this end, 52 baboons (Papio hamadryas) underwent partial pancreatectomy, followed by continuous infusion of EXE or saline (SAL) for 14 weeks. Histological analysis, immunohistochemistry, Computer Assisted Stereology Toolbox morphometry, and immunofluorescence staining were performed at baseline and after treatment. The EXE treatment did not induce pancreatitis, parenchymal or periductal inflammatory cell accumulation, ductal hyperplasia, or dysplastic lesions/pancreatic intraepithelial neoplasia. At study end, Ki-67-positive (proliferating) acinar cell number did not change, compared with baseline, in either group. Ki-67-positive ductal cells increased after EXE treatment (P = 0.04). However, the change in Ki-67-positive ductal cell number did not differ significantly between the EXE and SAL groups (P = 0.13). M-30-positive (apoptotic) acinar and ductal cell number did not change after SAL or EXE treatment. No changes in ductal density and volume were observed after EXE or SAL. Interestingly, by triple-immunofluorescence staining, we detected c-kit (a marker of cell transdifferentiation) positive ductal cells co-expressing insulin in ducts only in the EXE group at study end, suggesting that EXE may promote the differentiation of ductal cells toward a β-cell phenotype. In conclusion, 14 weeks of EXE treatment did not exert any negative effect on exocrine pancreas, by inducing either pancreatic inflammation or hyperplasia/dysplasia in nonhuman primates.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
INTRODUCTION: This study evaluated whether leprosy reactions could be associated with oral infection. METHODS: Leprosy patients (n = 38) with (Group I) and without (Group II) oral infections were selected. Reactions were identified from the clinical and histopathological features associated with serum C-reactive protein (CRP) and10kDa interferon-gamma-induced protein (IP-10) levels, determined before and after elimination of the foci of infection. RESULTS: Group I presented more reactions than group II did, and improvement of the reactions after dental treatment. Serum CRP and IP-10 did not differ before and after the dental treatment, but differed between the groups. CONCLUSIONS: Oral infection could be an exacerbating factor in leprosy reactions.
Resumo:
The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.