839 resultados para Unrelated parallel machines
Resumo:
Clustering is defined as the grouping of similar items in a set, and is an important process within the field of data mining. As the amount of data for various applications continues to increase, in terms of its size and dimensionality, it is necessary to have efficient clustering methods. A popular clustering algorithm is K-Means, which adopts a greedy approach to produce a set of K-clusters with associated centres of mass, and uses a squared error distortion measure to determine convergence. Methods for improving the efficiency of K-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting a more efficient data structure, notably a multi-dimensional binary search tree (KD-Tree) to store either centroids or data points. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient K-Means techniques in parallel computational environments. In this work, we provide a parallel formulation for the KD-Tree based K-Means algorithm and address its load balancing issues.
Resumo:
The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.
Resumo:
The hazards associated with high voltage three phase inverters and the rotating shafts of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the "hands on" instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes cost around $25 and can be made with minimal effort.
Resumo:
The hazards associated with high-voltage three-phase inverters and high-powered large electrical machines have resulted in most of the engineering courses covering three-phase machines and drives theoretically. This paper describes a set of purpose-built, low-voltage, and low-cost teaching equipment that allows the hands-on instruction of three-phase inverters and rotating machines. The motivation for moving towards a system running at low voltages is that the students can safely experiment freely with the motors and inverter. The students can also access all of the current and voltage waveforms, which until now could only be studied in textbooks or observed as part of laboratory demonstrations. Both the motor and the inverter designs are for teaching purposes and require minimal effort and cost
Resumo:
The results of a study of the variation of three-phase induction machines' input impedance with frequency are proposed. A range of motors were analysed, both two-pole and four-pole, and the magnitude and phase of the input impedance were obtained over a wide frequency range of 20 Hz-1 MHz. For test results that would be useful in the prediction of the performance of induction machines during typical use, a test procedure was developed to represent closely typical three-phase stator coil connections when the induction machine is driven by a three-phase inverter. In addition, tests were performed with the motor's cases both grounded and not grounded. The results of the study show that all induction machines of the type considered exhibit a multiresonant impedance profile, where the input impedance reaches at least one maximum as the input frequency is increased. Furthermore, the test results show that the grounding of the motor's case has a significant effect on the impedance profile. Methods to exploit the input impedance profile of an induction machine to optimise machine and inverter systems are also discussed.
Resumo:
An eddy current testing system consists of a multi-sensor probe, a computer and a special expansion card and software for data-collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
An eddy current testing system consists of a multi-sensor probe, computer and a special expansion card and software for data collection and analysis. The probe incorporates an excitation coil, and sensor coils; at least one sensor coil is a lateral current-normal coil and at least one is a current perturbation coil.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
This paper presents the results of the application of a parallel Genetic Algorithm (GA) in order to design a Fuzzy Proportional Integral (FPI) controller for active queue management on Internet routers. The Active Queue Management (AQM) policies are those policies of router queue management that allow the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. Two different parallel implementations of the genetic algorithm are adopted to determine an optimal configuration of the FPI controller parameters. Finally, the results of several experiments carried out on a forty nodes cluster of workstations are presented.
Resumo:
This paper presents a parallel genetic algorithm to the Steiner Problem in Networks. Several previous papers have proposed the adoption of GAs and others metaheuristics to solve the SPN demonstrating the validity of their approaches. This work differs from them for two main reasons: the dimension and the characteristics of the networks adopted in the experiments and the aim from which it has been originated. The reason that aimed this work was namely to build a comparison term for validating deterministic and computationally inexpensive algorithms which can be used in practical engineering applications, such as the multicast transmission in the Internet. On the other hand, the large dimensions of our sample networks require the adoption of a parallel implementation of the Steiner GA, which is able to deal with such large problem instances.
Resumo:
A parallel convolutional coder (104) comprising: a plurality of serial convolutional coders (108) each having a register with a plurality of memory cells and a plurality of serial coder outputs,- input means (120) from which data can be transferred in parallel into the registers,- and a parallel coder output (124) comprising a plurality of output memory cells each of which is connected to one of the serial coder outputs so that data can be transferred in parallel from all of the serial coders to the parallel coder output.