928 resultados para Unconstrained and convex optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 26A33, 30C45; Secondary 33A35

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silvia Baeva - In the Ministry of Education and Science’s system it has been talked about optimization of the school network; this optimization can be carried out in different directions and be supported by laws. An important aspect in the optimization of the school network is to reduce costs and increase overall efficiency in each school. We will formulate this aspect as a problem of the multicriteria decisions making and by appropriate numbers of methods and criteria it can be transformed to the problem of unicriterion optimization. This problem is separated into two stages: 1-th stage – determining the minimum number of classes in a school under certain statutory provisions for the size of each of them; 2-th stage – the appointment of a minimum number of teachers and achievement of maximal effectiveness of teaching and acquiring of knowledge and skills by students according to certain statutory provisions for teachers’ annual norms of subjects and number of hours in a particular subject area and the salaries of teachers. The achievement of maximum overall efficiency is a priority in all schools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a crucial task to evaluate the reliability of manufacturing process in product development process. Process reliability is a measurement of production ability of reconfigurable manufacturing system (RMS), which serves as an integrated performance indicator of the production process under specified technical constraints, including time, cost and quality. An integration framework of manufacturing process reliability evaluation is presented together with product development process. A mathematical model and algorithm based on universal generating function (UGF) is developed for calculating the reliability of manufacturing process with respect to task intensity and process capacity, which are both independent random variables. The rework strategies of RMS are analyzed under different task intensity based on process reliability is presented, and the optimization of rework strategies based on process reliability is discussed afterwards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J05, 62J10, 62F35, 62H12, 62P30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new, health supporting food of high quality and the optimization of food technological processes today require the application of statistical methods of experimental design. The principles and steps of statistical planning and evaluation of experiments will be explained. By example of the development of a gluten-free rusk (zwieback), which is enriched by roughage compounds the application of a simplex-centroid mixture design will be shown. The results will be illustrated by different graphics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Principal component analysis (PCA) is well recognized in dimensionality reduction, and kernel PCA (KPCA) has also been proposed in statistical data analysis. However, KPCA fails to detect the nonlinear structure of data well when outliers exist. To reduce this problem, this paper presents a novel algorithm, named iterative robust KPCA (IRKPCA). IRKPCA works well in dealing with outliers, and can be carried out in an iterative manner, which makes it suitable to process incremental input data. As in the traditional robust PCA (RPCA), a binary field is employed for characterizing the outlier process, and the optimization problem is formulated as maximizing marginal distribution of a Gibbs distribution. In this paper, this optimization problem is solved by stochastic gradient descent techniques. In IRKPCA, the outlier process is in a high-dimensional feature space, and therefore kernel trick is used. IRKPCA can be regarded as a kernelized version of RPCA and a robust form of kernel Hebbian algorithm. Experimental results on synthetic data demonstrate the effectiveness of IRKPCA. © 2010 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3D geographic information system (GIS) is data and computation intensive in nature. Internet users are usually equipped with low-end personal computers and network connections of limited bandwidth. Data reduction and performance optimization techniques are of critical importance in quality of service (QoS) management for online 3D GIS. In this research, QoS management issues regarding distributed 3D GIS presentation were studied to develop 3D TerraFly, an interactive 3D GIS that supports high quality online terrain visualization and navigation. ^ To tackle the QoS management challenges, multi-resolution rendering model, adaptive level of detail (LOD) control and mesh simplification algorithms were proposed to effectively reduce the terrain model complexity. The rendering model is adaptively decomposed into sub-regions of up-to-three detail levels according to viewing distance and other dynamic quality measurements. The mesh simplification algorithm was designed as a hybrid algorithm that combines edge straightening and quad-tree compression to reduce the mesh complexity by removing geometrically redundant vertices. The main advantage of this mesh simplification algorithm is that grid mesh can be directly processed in parallel without triangulation overhead. Algorithms facilitating remote accessing and distributed processing of volumetric GIS data, such as data replication, directory service, request scheduling, predictive data retrieving and caching were also proposed. ^ A prototype of the proposed 3D TerraFly implemented in this research demonstrates the effectiveness of our proposed QoS management framework in handling interactive online 3D GIS. The system implementation details and future directions of this research are also addressed in this thesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterizing engineered human lung tissue is an important step in developing a functional tissue replacement for lung tissue repair and in vitro analysis. Small tissue constructs were grown by seeding IMR-90 fetal lung fibroblasts and adult microvascular endothelial cells onto a Polyglycolic acid (PGA) polymer template. Introducing the constructs to dynamic culture conditions inside a bioreactor facilitated three-dimensional growth seen in scanning electron microscopy images (SEM). Characterization of the resultant tissue samples was done using SEM imagery, tensile tests, and biochemical assays to quantify extra-cellular matrix (ECM) composition. Tensile tests of the engineered samples indicated an increase in the mechanical properties when compared with blank constructs. Elastin and collagen content was found to average 3.19% and 15.49% respectively in relation to total mass of the tissue samples. The presence of elastin and collagen within the constructs most likely explains the mechanical differences that we noted. These findings suggest that the necessary ECM can be established in engineered tissue constructs and that optimization of this procedure has the capacity to generate the load bearing elements required for construction of a functional lung tissue equivalent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work consists of the conception, developing and implementation of a Computational Routine CAE which has algorithms suitable for the tension and deformation analysis. The system was integrated to an academic software named as OrtoCAD. The expansion algorithms for the interface CAE genereated by this work were developed in FORTRAN with the objective of increase the applications of two former works of PPGEM-UFRN: project and fabrication of a Electromechanincal reader and Software OrtoCAD. The software OrtoCAD is an interface that, orinally, includes the visualization of prothetic cartridges from the data obtained from a electromechanical reader (LEM). The LEM is basically a tridimensional scanner based on reverse engineering. First, the geometry of a residual limb (i.e., the remaining part of an amputee leg wherein the prothesis is fixed) is obtained from the data generated by LEM by the use of Reverse Engineering concepts. The proposed core FEA uses the Shell's Theory where a 2D surface is generated from a 3D piece form OrtoCAD. The shell's analysis program uses the well-known Finite Elements Method to describe the geometry and the behavior of the material. The program is based square-based Lagragean elements of nine nodes and displacement field of higher order to a better description of the tension field in the thickness. As a result, the new FEA routine provide excellent advantages by providing new features to OrtoCAD: independency of high cost commercial softwares; new routines were added to the OrtoCAD library for more realistic problems by using criteria of fault engineering of composites materials; enhanced the performance of the FEA analysis by using a specific grid element for a higher number of nodes; and finally, it has the advantage of open-source project and offering customized intrinsic versatility and wide possibilities of editing and/or optimization that may be necessary in the future

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of climate change over South America (SA) has been observed that the combination of high temperatures and rain more temperatures less rainfall, cause different impacts such as extreme precipitation events, favorable conditions for fires and droughts. As a result, these regions face growing threat of water shortage, local or generalized. Thus, the water availability in Brazil depends largely on the weather and its variations in different time scales. In this sense, the main objective of this research is to study the moisture budget through regional climate models (RCM) from Project Regional Climate Change Assessments for La Plata Basin (CLARIS-LPB) and combine these RCM through two statistical techniques in an attempt to improve prediction on three areas of AS: Amazon (AMZ), Northeast Brazil (NEB) and the Plata Basin (LPB) in past climates (1961-1990) and future (2071-2100). The moisture transport on AS was investigated through the moisture fluxes vertically integrated. The main results showed that the average fluxes of water vapor in the tropics (AMZ and NEB) are higher across the eastern and northern edges, thus indicating that the contributions of the trade winds of the North Atlantic and South are equally important for the entry moisture during the months of JJA and DJF. This configuration was observed in all the models and climates. In comparison climates, it was found that the convergence of the flow of moisture in the past weather was smaller in the future in various regions and seasons. Similarly, the majority of the SPC simulates the future climate, reduced precipitation in tropical regions (AMZ and NEB), and an increase in the LPB region. The second phase of this research was to carry out combination of RCM in more accurately predict precipitation, through the multiple regression techniques for components Main (C.RPC) and convex combination (C.EQM), and then analyze and compare combinations of RCM (ensemble). The results indicated that the combination was better in RPC represent precipitation observed in both climates. Since, in addition to showing values be close to those observed, the technique obtained coefficient of correlation of moderate to strong magnitude in almost every month in different climates and regions, also lower dispersion of data (RMSE). A significant advantage of the combination of methods was the ability to capture extreme events (outliers) for the study regions. In general, it was observed that the wet C.EQM captures more extreme, while C.RPC can capture more extreme dry climates and in the three regions studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Product quality planning is a fundamental part of quality assurance in manufacturing. It is composed of the distribution of quality aims over each phase in product development and the deployment of quality operations and resources to accomplish these aims. This paper proposes a quality planning methodology based on risk assessment and the planning tasks of product development are translated into evaluation of risk priorities. Firstly, a comprehensive model for quality planning is developed to address the deficiencies of traditional quality function deployment (QFD) based quality planning. Secondly, a novel failure knowledge base (FKB) based method is discussed. Then a mathematical method and algorithm of risk assessment is presented for target decomposition, measure selection, and sequence optimization. Finally, the proposed methodology has been implemented in a web based prototype software system, QQ-Planning, to solve the problem of quality planning regarding the distribution of quality targets and the deployment of quality resources, in such a way that the product requirements are satisfied and the enterprise resources are highly utilized. © Springer-Verlag Berlin Heidelberg 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While it is well known that exposure to radiation can result in cataract formation, questions still remain about the presence of a dose threshold in radiation cataractogenesis. Since the exposure history from diagnostic CT exams is well documented in a patient’s medical record, the population of patients chronically exposed to radiation from head CT exams may be an interesting area to explore for further research in this area. However, there are some challenges in estimating lens dose from head CT exams. An accurate lens dosimetry model would have to account for differences in imaging protocols, differences in head size, and the use of any dose reduction methods.

The overall objective of this dissertation was to develop a comprehensive method to estimate radiation dose to the lens of the eye for patients receiving CT scans of the head. This research is comprised of a physics component, in which a lens dosimetry model was derived for head CT, and a clinical component, which involved the application of that dosimetry model to patient data.

The physics component includes experiments related to the physical measurement of the radiation dose to the lens by various types of dosimeters placed within anthropomorphic phantoms. These dosimeters include high-sensitivity MOSFETs, TLDs, and radiochromic film. The six anthropomorphic phantoms used in these experiments range in age from newborn to adult.

First, the lens dose from five clinically relevant head CT protocols was measured in the anthropomorphic phantoms with MOSFET dosimeters on two state-of-the-art CT scanners. The volume CT dose index (CTDIvol), which is a standard CT output index, was compared to the measured lens doses. Phantom age-specific CTDIvol-to-lens dose conversion factors were derived using linear regression analysis. Since head size can vary among individuals of the same age, a method was derived to estimate the CTDIvol-to-lens dose conversion factor using the effective head diameter. These conversion factors were derived for each scanner individually, but also were derived with the combined data from the two scanners as a means to investigate the feasibility of a scanner-independent method. Using the scanner-independent method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter, most of the fitted lens dose values fell within 10-15% of the measured values from the phantom study, suggesting that this is a fairly accurate method of estimating lens dose from the CTDIvol with knowledge of the patient’s head size.

Second, the dose reduction potential of organ-based tube current modulation (OB-TCM) and its effect on the CTDIvol-to-lens dose estimation method was investigated. The lens dose was measured with MOSFET dosimeters placed within the same six anthropomorphic phantoms. The phantoms were scanned with the five clinical head CT protocols with OB-TCM enabled on the one scanner model at our institution equipped with this software. The average decrease in lens dose with OB-TCM ranged from 13.5 to 26.0%. Using the size-specific method to derive the CTDIvol-to-lens dose conversion factor from the effective head diameter for protocols with OB-TCM, the majority of the fitted lens dose values fell within 15-18% of the measured values from the phantom study.

Third, the effect of gantry angulation on lens dose was investigated by measuring the lens dose with TLDs placed within the six anthropomorphic phantoms. The 2-dimensional spatial distribution of dose within the areas of the phantoms containing the orbit was measured with radiochromic film. A method was derived to determine the CTDIvol-to-lens dose conversion factor based upon distance from the primary beam scan range to the lens. The average dose to the lens region decreased substantially for almost all the phantoms (ranging from 67 to 92%) when the orbit was exposed to scattered radiation compared to the primary beam. The effectiveness of this method to reduce lens dose is highly dependent upon the shape and size of the head, which influences whether or not the angled scan range coverage can include the entire brain volume and still avoid the orbit.

The clinical component of this dissertation involved performing retrospective patient studies in the pediatric and adult populations, and reconstructing the lens doses from head CT examinations with the methods derived in the physics component. The cumulative lens doses in the patients selected for the retrospective study ranged from 40 to 1020 mGy in the pediatric group, and 53 to 2900 mGy in the adult group.

This dissertation represents a comprehensive approach to lens of the eye dosimetry in CT imaging of the head. The collected data and derived formulas can be used in future studies on radiation-induced cataracts from repeated CT imaging of the head. Additionally, it can be used in the areas of personalized patient dose management, and protocol optimization and clinician training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.

The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.

We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.

Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of decentralized sequential detection is studied in this thesis, where local sensors are memoryless, receive independent observations, and no feedback from the fusion center. In addition to traditional criteria of detection delay and error probability, we introduce a new constraint: the number of communications between local sensors and the fusion center. This metric is able to reflect both the cost of establishing communication links as well as overall energy consumption over time. A new formulation for communication-efficient decentralized sequential detection is proposed where the overall detection delay is minimized with constraints on both error probabilities and the communication cost. Two types of problems are investigated based on the communication-efficient formulation: decentralized hypothesis testing and decentralized change detection. In the former case, an asymptotically person-by-person optimum detection framework is developed, where the fusion center performs a sequential probability ratio test based on dependent observations. The proposed algorithm utilizes not only reported statistics from local sensors, but also the reporting times. The asymptotically relative efficiency of proposed algorithm with respect to the centralized strategy is expressed in closed form. When the probabilities of false alarm and missed detection are close to one another, a reduced-complexity algorithm is proposed based on a Poisson arrival approximation. In addition, decentralized change detection with a communication cost constraint is also investigated. A person-by-person optimum change detection algorithm is proposed, where transmissions of sensing reports are modeled as a Poisson process. The optimum threshold value is obtained through dynamic programming. An alternative method with a simpler fusion rule is also proposed, where the threshold values in the algorithm are determined by a combination of sequential detection analysis and constrained optimization. In both decentralized hypothesis testing and change detection problems, tradeoffs in parameter choices are investigated through Monte Carlo simulations.