989 resultados para Uncertainty Modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the issue of policy evaluation in a context in which policymakers are uncertain about the effects of oil prices on economic performance. I consider models of the economy inspired by Solow (1980), Blanchard and Gali (2007), Kim and Loungani (1992) and Hamilton (1983, 2005), which incorporate different assumptions on the channels through which oil prices have an impact on economic activity. I first study the characteristics of the model space and I analyze the likelihood of the different specifications. I show that the existence of plausible alternative representations of the economy forces the policymaker to face the problem of model uncertainty. Then, I use the Bayesian approach proposed by Brock, Durlauf and West (2003, 2007) and the minimax approach developed by Hansen and Sargent (2008) to integrate this form of uncertainty into policy evaluation. I find that, in the environment under analysis, the standard Taylor rule is outperformed under a number of criteria by alternative simple rules in which policymakers introduce persistence in the policy instrument and respond to changes in the real price of oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Stability and Growth Pact (SGP) was established to govern discretionary fiscal policy in the European Monetary Union. This article studies the effects created when there is uncertainty about the members’ commitment to respecting the established deficit limits in the SGP. We will show that, even if countries respect the SGP deficit ceiling, the presence of uncertainty about their compliance will bring about higher volatility in key economic variables, which could, in turn, affect unemployment and growth negatively. This finding shows that it is important to reduce uncertainty about the members’ commitment towards the SGP. Keywords: fiscal policy rules, monetary union, Stability and Growth Pact, uncertainty, commitment. JEL No.: E63, F55, H62, H87

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews three different approaches to modelling the cost-effectiveness of schistosomiasis control. Although these approaches vary in their assessment of costs, the major focus of the paper is on the evaluation of effectiveness. The first model presented is a static economic model which assesses effectiveness in terms of the proportion of cases cured. This model is important in highlighting that the optimal choice of chemotherapy regime depends critically on the level of budget constraint, the unit costs of screening and treatment, the rates of compliance with screening and chemotherapy and the prevalence of infection. The limitations of this approach is that it models the cost-effectiveness of only one cycle of treatment, and effectiveness reflects only the immediate impact of treatment. The second model presented is a prevalence-based dynamic model which links prevalence rates from one year to the next, and assesses effectiveness as the proportion of cases prevented. This model was important as it introduced the concept of measuring the long-term impact of control by using a transmission model which can assess reduction in infection through time, but is limited to assessing the impact only on the prevalence of infection. The third approach presented is a theoretical framework which describes the dynamic relationships between infection and morbidity, and which assesses effectiveness in terms of case-years prevented of infection and morbidity. The use of this model in assessing the cost-effectiveness of age-targeted treatment in controlling Schistosoma mansoni is explored in detail, with respect to varying frequencies of treatment and the interaction between drug price and drug efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS: The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS: A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS: The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper study repeated games where the time repetitions of the stage game are not known or controlled by the players. We call this feature random monitoring. Kawamori's (2004) shows that perfect random monitoring is always better than the canonical case. Surprisingly, when the monitoring is public, the result is less clear-cut and does not generalize in a straightforward way. Unless the public signals are sufficiently informative about player's actions and/or players are patient enough. In addition to a discount effect, that tends to consistently favor the provision of incentives, we found an information effect, associated with the time uncertainty on the distribution of public signals. Whether payoff improvements are or not possible, depends crucially on the direction and strength of these effects. JEL: C73, D82, D86. KEYWORDS: Repeated Games, Frequent Monitoring, Random Public Monitoring, Moral Hazard, Stochastic Processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid response to: Ortegón M, Lim S, Chisholm D, Mendis S. Cost effectiveness of strategies to combat cardiovascular disease, diabetes, and tobacco use in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012 Mar 2;344:e607. doi: 10.1136/bmj.e607. PMID: 22389337.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cry11Bb is an insecticidal crystal protein produced by Bacillus thuringiensis subsp. medellin during its stationary phase; this -endotoxin is active against dipteran insects and has great potential for mosquito borne disease control. Here, we report the first theoretical model of the tridimensional structure of a Cry11 toxin. The tridimensional structure of the Cry11Bb toxin was obtained by homology modelling on the structures of the Cry1Aa and Cry3Aa toxins. In this work we give a brief description of our model and hypothesize the residues of the Cry11Bb toxin that could be important in receptor recognition and pore formation. This model will serve as a starting point for the design of mutagenesis experiments aimed to the improvement of toxicity, and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article studies how product introduction decisions relate to profitability and uncertainty in the context of multi-product firms and product differentiation. These two features, common to many modern industries, have not received much attention in the literature as compared to the classical problem of firm entry, even if the determinants of firm and product entry are quite different. The theoretical predictions about the sign of the impact of uncertainty on product entry are not conclusive. Therefore, an econometric model relating firms’ product introduction decisions with profitability and profit uncertainty is proposed. Firm’s estimated profits are obtained from a structural model of product demand and supply, and uncertainty is proxied by profits’ variance. The empirical analysis is carried out using data on the Spanish car industry for the period 1990-2000. The results show a positive relationship between product introduction and profitability, and a negative one with respect to profit variability. Interestingly, the degree of uncertainty appears to be a driving force of entry stronger than profitability, suggesting that the product proliferation process in the Spanish car market may have been mainly a consequence of lower uncertainty rather than the result of having a more profitable market. Keywords: Product introduction, entry, uncertainty, multiproduct firms, automobile JEL codes: L11, L13

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the PhD thesis “Sound Texture Modeling” we deal with statistical modelling or textural sounds like water, wind, rain, etc. For synthesis and classification. Our initial model is based on a wavelet tree signal decomposition and the modeling of the resulting sequence by means of a parametric probabilistic model, that can be situated within the family of models trainable via expectation maximization (hidden Markov tree model ). Our model is able to capture key characteristics of the source textures (water, rain, fire, applause, crowd chatter ), and faithfully reproduces some of the sound classes. In terms of a more general taxonomy of natural events proposed by Graver, we worked on models for natural event classification and segmentation. While the event labels comprise physical interactions between materials that do not have textural propierties in their enterity, those segmentation models can help in identifying textural portions of an audio recording useful for analysis and resynthesis. Following our work on concatenative synthesis of musical instruments, we have developed a pattern-based synthesis system, that allows to sonically explore a database of units by means of their representation in a perceptual feature space. Concatenative syntyhesis with “molecules” built from sparse atomic representations also allows capture low-level correlations in perceptual audio features, while facilitating the manipulation of textural sounds based on their physical and perceptual properties. We have approached the problem of sound texture modelling for synthesis from different directions, namely a low-level signal-theoretic point of view through a wavelet transform, and a more high-level point of view driven by perceptual audio features in the concatenative synthesis setting. The developed framework provides unified approach to the high-quality resynthesis of natural texture sounds. Our research is embedded within the Metaverse 1 European project (2008-2011), where our models are contributting as low level building blocks within a semi-automated soundscape generation system.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.