962 resultados para Ultrasonic inspections
Resumo:
Epoxy coatings have been used on the embedded reinforcing bars of bridge decks since the mid-1970s to mitigate deterioration caused by chloride-induced corrosion. The use of chloride-based deicers became common in the early 1960s and caused corrosion of conventional uncoated bars in bridge decks within 5 to 10 years of commencement of deicer applications. In response to this rapid deterioration, the National Bureau of Standards researched coatings to protect the reinforcement (National Bureau of Standards, 1975), resulting in the development of epoxy-coated reinforcing bars, which were used in bridge decks beginning in 1973. While corrosion-related deterioration has been prevalent on bridge decks with uncoated reinforcing bars in northern climates where the use of deicing salts is common, bridge decks constructed after 1973 with epoxy-coated reinforcing have shown good corrosion resistance with only limited exceptions. On the whole, previous laboratory and field studies regarding the performance of epoxy-coated reinforcing bars are very promising; however, some laboratory and field studies have yielded differing results. In recent years, maintenance personnel for the Iowa Department of Transportation (Iowa DOT) have reportedly performed patch repairs to some bridge decks reinforced with epoxy-coated bars. At one such bridge, the southbound US 65 bridge (Bridge No. 7788.5L065) over the Union Pacific Railroad near Bondurant in Polk County, Iowa, deck repairs were performed by Iowa DOT maintenance personnel in the Spring of 2010, based on our communications regarding this topic with Mr. Gordon Port of the Iowa DOT. These repairs were observed by engineers from the Iowa DOT Office of Bridges and Structures, who reported that significant corrosion was found at a number of epoxy-coated reinforcing bars uncovered during this patch work. These repairs were reportedly performed at spalls and delaminated areas corresponding to cracks over transverse reinforcing bars, and involved careful removal of the concrete from over the bars. Figures 1 through 4 contain photographs provided by Iowa DOT personnel showing the removal process (Figure 1), the conditions encountered (Figures 2 and 3), and close-up views of the corroded reinforcing (Figure 4). As a result of these observations, the Iowa Department of Transportation has requested this study to gain further understanding of the long-term performance of bridge decks reinforced with epoxy-coated bars. The two main objectives of this study are to determine the long-term effectiveness of the epoxy coatings and to determine the potential causes for the deterioration at locations where corrosion has occurred. Wiss, Janney, Elstner Associates, Inc. (WJE) and the Iowa DOT identified eight different bridge decks across Iowa for this study that were constructed using epoxy-coated reinforcing bars. A field investigation consisting of visual inspections, a delamination survey, a concrete cover survey, electrical testing for susceptibility to corrosion, and concrete sampling was conducted within a survey area deemed to be representative of the condition of each bridge deck. Laboratory testing, including chloride ion content testing, characterization of the extracted bars, petrographic examination of the concrete, and carbonation testing, was conducted on the core samples taken from each bridge deck.
Resumo:
Humans experience the self as localized within their body. This aspect of bodily self-consciousness can be experimentally manipulated by exposing individuals to conflicting multisensory input, or can be abnormal following focal brain injury. Recent technological developments helped to unravel some of the mechanisms underlying multisensory integration and self-location, but the neural underpinnings are still under investigation, and the manual application of stimuli resulted in large variability difficult to control. This paper presents the development and evaluation of an MR-compatible stroking device capable of presenting moving tactile stimuli to both legs and the back of participants lying on a scanner bed while acquiring functional neuroimaging data. The platform consists of four independent stroking devices with a travel of 16-20 cm and a maximum stroking velocity of 15 cm/s, actuated over non-magnetic ultrasonic motors. Complemented with virtual reality, this setup provides a unique research platform allowing to investigate multisensory integration and its effects on self-location under well-controlled experimental conditions. The MR-compatibility of the system was evaluated in both a 3 and a 7 Tesla scanner and showed negligible interference with brain imaging. In a preliminary study using a prototype device with only one tactile stimulator, fMRI data acquired on 12 healthy participants showed visuo-tactile synchrony-related and body-specific modulations of the brain activity in bilateral temporoparietal cortex.
Resumo:
Approach slab pavement at integral abutment (I-A) bridges are prone to settlement and cracking, which has been long recognized by the Iowa Department of Transportation (DOT). A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. This study sought to supplement a previous project by instrumenting, monitoring, and analyzing the behavior of an approach slab tied to a integral abutment bridge. The primary objective of this investigation was to evaluate the performance of the approach slab. To satisfy the research needs, the project scope involved reviewing a similar previous study, implementing a health monitoring system on the approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections of the bridge and approach slab. Based on the information obtained from the testing, the following general conclusions were made: the integral connection between the approach slab and the bridge appears to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; the measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge and the observed responses generally followed an annual cyclic and/or short term cyclic pattern over time; the expansion joint at one side of the approach slab does not appear to be functioning as well as elsewhere; much larger frictional forces were observed in this study compared to the previous study.
Resumo:
Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.
Resumo:
Precast prestressed concrete panels have been used as subdecks in bridge construction in Iowa and other states. To investigate the performance of these types of composite slabs at locations adjacent to abutment and pier diaphragms in skewed bridges, a research prcject which involved surveys of design agencies and precast producers, field inspections of existing bridges, analytical studies, and experimental testing was conducted. The survey results from the design agencies and panel producers showed that standardization of precast panel construction would be desirable, that additional inspections at the precast plant and at the bridge site would be beneficial, and that some form of economical study should be undertaken to determine actual cost savings associated with composite slab construction. Three bridges in Hardin County, Iowa were inspected to observe general geometric relationships, construction details, and to note the visual condition of the bridges. Hairline cracks beneath several of the prestressing strands in many of the precast panels were observed, and a slight discoloration of the concrete was seen beneath most of the strands. Also, some rust staining was visible at isolated locations on several panels. Based on the findings of these inspections, future inspections are recommended to monitor the condition of these and other bridges constructed with precast panel subdecks. Five full-scale composite slab specimens were constructed in the Structural Engineering Laboratory at Iowa State University. One specimen modeled bridge deck conditions which are not adjacent to abutment or pier diaphragms, and the other four specimens represented the geometric conditions which occur for skewed diaphragms of 0, 15, 30, and 40 degrees. The specimens were subjected to wheel loads of service and factored level magnitudes at many locations on the slab surface and to concentrated loads which produced failure of the composite slab. The measured slab deflections and bending strains at both service and factored load levels compared reasonably well with the results predicted by simplified Finite element analyses of the specimens. To analytically evaluate the nominal strength for a composite slab specimen, yield-line and punching shear theories were applied. Yield-line limit loads were computed using the crack patterns generated during an ultimate strength test. In most cases, these analyses indicated that the failure mode was not flexural. Since the punching shear limit loads in most instances were close to the failure loads, and since the failure surfaces immediately adjacent to the wheel load footprint appeared to be a truncated prism shape, the probable failure mode for all of the specimens was punching shear. The development lengths for the prestressing strands in the rectangular and trapezoidal shaped panels was qualitatively investigated by monitoring strand slippage at the ends of selected prestressing strands. The initial strand transfer length was established experimentally by monitoring concrete strains during strand detensioning, and this length was verified analytically by a finite element analysis. Even though the computed strand embedment lengths in the panels were not sufficient to fully develop the ultimate strand stress, sufficient stab strength existed. Composite behavior for the slab specimens was evaluated by monitoring slippage between a panel and the topping slab and by computation of the difference in the flexural strains between the top of the precast panel and the underside of the topping slab at various locations. Prior to the failure of a composite slab specimen, a localized loss of composite behavior was detected. The static load strength performance of the composite slab specimens significantly exceeded the design load requirements. Even with skew angles of up to 40 degrees, the nominal strength of the slabs did not appear to be affected when the ultimate strength test load was positioned on the portion of each slab containing the trapezoidal-shaped panel. At service and factored level loads, the joint between precast panels did not appear to influence the load distribution along the length of the specimens. Based on the static load strength of the composite slab specimens, the continued use of precast panels as subdecks in bridge deck construction is recommended.
Resumo:
Research is reported which attempted to identify construction procedures that will provide an improved centerline joint on asphalt concrete pavements. Various construction procedures and their evaluation are described. Core densities were made and visual inspections were made 3 years after construction. Center cracking was measured at 4, 5, and 6 years. The only procedure to rank the same when comparing cracking and density (delete the 1:1 slope shoe on the edge) is described. This procedure had the highest average density and also the least cracking through 1985. This method provided the best performance for 4 years after construction and involved the removal of the 1:1 slope shoe from the paver when placing the surface course. This method had 9.0% cracked after 4 years and 100% cracked after 6 years of service.
Resumo:
Premature failure of concrete pavement contraction joint seals is an ongoing and costly problem for the Iowa Department of Transportation. Several joint seal test sections consisting of variations in sawing methods, joint cleaning techniques, sealant installation, and sealant types have been established over the past few years. Laboratory analysis and field inspections were done as a part of the tests, and core samples were taken for laboratory adhesion pull tests. Such methods often cover specifically small areas and may not expose hidden failures. Some tests are also labor-intensive and destructive, especially that of coring. An innovative, nondestructive, broad coverage joint seal tester that yields quick results has been designed and developed for evaluation of pavement joint seal performance. The Iowa vacuum joint seal tester (IA-VAC) applies a low vacuum above a joint seal that has been spray-covered with a foaming water solution. Any unsealed area or leak that exists along the joint will become quickly and clearly visible by the development of bubbles at the leak point. By analyzing the results from the IA-VAC tests, information on the number and types of leaks can be obtained; such information will help identify the source of the problem and direct efforts toward a solution.
Resumo:
Since 1978 the concept of longitudinal edge drains along Iowa primary and Interstate highways has been accepted as a cost-effective way of prolonging pavement life. Edge-drain installations have increased over the years, reaching a total of nearly 3,000 mi by 1989. With so many miles of edge drain installed, the development of a system for inspection and evaluation of the drains became essential. Equipment was purchased to evaluate 4-in.-diameter and geocomposite edge drains. Initial evaluations at various sites supported the need for a postconstruction inspection program to ensure that edge-drain installations were in accord with plans and specifications. Information disclosed by video inspections in edge drains and in culverts was compiled on videotape to be used as an informative tool for personnel in the design, construction, and maintenance departments. Video evaluations have influenced changes in maintenance, design, and construction inspection for highway drainage systems in Iowa.
Resumo:
The objective of this research was to evaluate two experimental D.S. Brown, Type SL450 and one D.S. Brown, Type SL750 expansion assemblies to identify possible construction problems and to determine the long term performances. These joints were installed in Wapello County on Jefferson Street viaduct in Ottumwa, Iowa. Visual inspections were made yearly. There is an indication that there may be a slow leakage at all three joints. The joint assemblies have performed well.
Resumo:
The objective of this research was to evaluate two experimental Acme MSB neoprene expansion assemblies to identify possible construction problems and to determine the long term performance. These joints were installed in Black Hawk County on the curved bridge of ramp H from US 218 to I-380 in Waterloo, Iowa. Visual inspections were made yearly. There is slow leakage at one joint and indication that there is some slow leakage of both joints. The joint assemblies have performed well.
Resumo:
This project was to determine possible construction problems and evaluate the performance of experimental joint seals. Joints were installed in Woodbury County on US 20 over the Missouri River. ACME-Beta B-520 joints were used. Visual inspections were made yearly. Although the joints performed well for eight years, they deteriorated rapidly and have failed. It was concluded these joints did not perform satisfactorily.
Resumo:
AASHTO has a standard test method for determining the specific gravity of aggregates. The people in the Aggregate Section of the Central Materials Laboratory perform the AASHTO T-85 test for AMRL inspections and reference samples. Iowa's test method 201B, for specific gravity determinations, requires more time and more care to perform than the AASHTO procedure. The major difference between the two procedures is that T-85 requires the sample to be weighed in water and 201B requires the 2 quart pycnometer jar. Efficiency in the Central Laboratory would be increased if the AASHTO procedure for coarse aggregate specific gravity determinations was adopted. The questions to be answered were: (1) Do the two procedures yield the same test results? (2) Do the two procedures yield the same precision? An experiment was conducted to study the different test methods. From the experimental results, specific gravity determinations by AASHTO T-85 method were found to correlate to those obtained by the Iowa 201B method with an R-squared value of 0.99. The absorption values correlated with an R-squared value of 0.98. The single operator precision was equivalent for the two methods. Hence, this procedure was recommended to be adopted in the Central Laboratory.
Resumo:
The goal of this study was to investigate whether the elastic behavior of conduit arteries of humans or rats is altered as a result of concomitant hypertension. Forearm arterial cross-sectional compliance-pressure curves were determined noninvasively by means of a high precision ultrasonic echo-tracking device coupled to a photoplethysmograph (Finapres system) allowing simultaneous arterial diameter and finger blood pressure monitoring. Seventeen newly diagnosed hypertensive patients with a humeral blood pressure of 163/103 +/- 4.4/2.2 mm Hg (mean +/- SEM) and 17 age- and sex-matched normotensive controls with a humeral blood pressure of 121/77 +/- 3.2/1.9 mm Hg were included in the study. Compliance-pressure curves were also established at the carotid artery of 16-week-old anesthetized spontaneously hypertensive rats (n = 14) as well as Wistar-Kyoto normotensive animals (n = 15) using the same echo-tracking device. In these animals, intra-arterial pressure was monitored in the contralateral carotid artery. Mean blood pressures averaged 197 +/- 4 and 140 +/- 3 mm Hg in the hypertensive and normotensive rats, respectively. Despite the considerable differences in blood pressure, the diameter-pressure and cross-sectional compliance-pressure and distensibility-pressure curves were not different when hypertensive patients or animals were compared with their respective controls. These results suggest that the elastic behavior of a medium size muscular artery (radial) in humans and of an elastic artery (carotid) in rats is not necessarily altered by an increase in blood pressure.
Resumo:
A comprehensive field detection method is proposed that is aimed at developing advanced capability for reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on fully adaptive bridge monitoring to minimize the problems inherent in human inspections of bridges. We developed a novel integrated condition-based maintenance (CBM) framework integrating transformative research in RFID sensors and sensing architecture, for in-situ scour monitoring, state-of-the-art computationally efficient multiscale modeling for scour assessment.