959 resultados para Two-phase flows
Resumo:
In this prospective two-phase experimental trial, 10 pigs were anaesthetized twice with isoflurane only. In the first phase, the individual minimum alveolar concentration (MAC) was determined and in the second phase the effects on withdrawal reflexes of increasing end-tidal isoflurane concentrations (from 1.6% to 2.8%) were assessed. Single, 10 and 60 repeated electrical stimulations were used to evoke withdrawal reflexes which were recorded and quantified by electromyography. Recruitment curves for reflex amplitude for increasing stimulation intensities and isoflurane concentrations were constructed. Isoflurane MAC was 1.9+/-0.3%. Reflexes evoked by repeated stimulation were suppressed at isoflurane concentrations significantly higher than those which suppressed complex movements during MAC determination (P=0.014 and P=0.006 for 10 and 60 repeated stimuli respectively). Isoflurane up to 2.8% was still not able to abolish reflex activity evoked by repeated stimulations in all pigs. Single stimulation reflexes were suppressed at significantly lower concentrations than repeated stimulation reflexes (P=0.008 and P=0.004 for 10 and 60 repeated stimuli, respectively). Reflex amplitude was significantly correlated with isoflurane concentration (P<0.001, r=-0.85) independent of the individual MAC. The findings indicate that the level at which isoflurane suppresses withdrawal reflexes is dependent on the stimulation paradigm (single vs. repeated electrical stimulation), and there is limited value in expressing reflex withdrawal suppression in terms of MAC as purposeful and reflex movements are independently affected by isoflurane in individual animals.
Resumo:
Opioid substitution treatment (OST) for opioid dependence may be limited by adverse events (AEs). Increasing the range of therapeutic options optimizes outcomes and facilitates patient management. An international, multi-center, two-phase study investigated the efficacy and safety of slow-release oral morphine (SROM) versus methadone in patients receiving methadone therapy for opioid dependence. In phase 1 (two way cross-over, 11 weeks each period) patients were randomized to SROM or methadone oral solution. In phase 2 (25 weeks), patients continued treatment with SROM (group A) or switched from methadone to SROM (group B). In total, 211 out of 276 completed phase 1 and 198 entered phase 2 (n = 95 group A, n = 103 group B). Treatment with both SROM and methadone was well tolerated. However, the mean QTc-interval associated with methadone was significantly longer than that under SROM. Higher treatment satisfaction, fewer cravings for heroin, and lower mental stress were reported with SROM. This study adds a significant further weight of evidence that SROM is an effective and well tolerated long-term maintenance treatment for opioid dependence with a beneficial risk profile compared to methadone regarding cardiac effects and supports its clinical utility.
Resumo:
The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolifi c source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert‘ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fi ne lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and fi nely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fi ne elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithifi cation and crystallization of quartz occurred in the fi rst 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-fi lling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fl uid evolution after silicilyte lithifi cation. Primary, all-liquid fl uid inclusions in the fracturefi lling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fl uid inclusions in quartz cements that show brines at 50°C and fi rst hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fl uid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of fi rst-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fl uid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the fl ank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the fl anks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by Amthor et al. 114488 preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifi cations of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the diffi culty for a given slab to evacuate all the fl uids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.
Resumo:
BACKGROUND Adjuvant therapy with an aromatase inhibitor improves outcomes, as compared with tamoxifen, in postmenopausal women with hormone-receptor-positive breast cancer. METHODS In two phase 3 trials, we randomly assigned premenopausal women with hormone-receptor-positive early breast cancer to the aromatase inhibitor exemestane plus ovarian suppression or tamoxifen plus ovarian suppression for a period of 5 years. Suppression of ovarian estrogen production was achieved with the use of the gonadotropin-releasing-hormone agonist triptorelin, oophorectomy, or ovarian irradiation. The primary analysis combined data from 4690 patients in the two trials. RESULTS After a median follow-up of 68 months, disease-free survival at 5 years was 91.1% in the exemestane-ovarian suppression group and 87.3% in the tamoxifen-ovarian suppression group (hazard ratio for disease recurrence, second invasive cancer, or death, 0.72; 95% confidence interval [CI], 0.60 to 0.85; P<0.001). The rate of freedom from breast cancer at 5 years was 92.8% in the exemestane-ovarian suppression group, as compared with 88.8% in the tamoxifen-ovarian suppression group (hazard ratio for recurrence, 0.66; 95% CI, 0.55 to 0.80; P<0.001). With 194 deaths (4.1% of the patients), overall survival did not differ significantly between the two groups (hazard ratio for death in the exemestane-ovarian suppression group, 1.14; 95% CI, 0.86 to 1.51; P=0.37). Selected adverse events of grade 3 or 4 were reported for 30.6% of the patients in the exemestane-ovarian suppression group and 29.4% of those in the tamoxifen-ovarian suppression group, with profiles similar to those for postmenopausal women. CONCLUSIONS In premenopausal women with hormone-receptor-positive early breast cancer, adjuvant treatment with exemestane plus ovarian suppression, as compared with tamoxifen plus ovarian suppression, significantly reduced recurrence. (Funded by Pfizer and others; TEXT and SOFT ClinicalTrials.gov numbers, NCT00066703 and NCT00066690, respectively.).
Resumo:
A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.
Resumo:
The intensification of consequential testing situations is associated with an increase in anxiety among American students (Casbarro, 2005). Test anxiety can have negative effects on student test performance (Everson, Millsap, & Rodriguez, 1991). If test anxiety has the potential to decrease students’ test scores, it becomes a factor that can threaten the validity of any inferences drawn between test scores and student progress (Cizek & Burg, 2006). There are several factors that relate closely to test anxiety (Cizek & Burg, 2006). Variables of key influence include gender, socioeconomic status, and teacher-manifested anxiety (Hembree, 1988). Another influence upon test anxiety is students’ participation in academic support programs to prepare them for exit examinations. The purpose of this study was to examine the relationship between 10th grade high school student gender, socioeconomic status, perceived teacher anxiety, and student preparedness with levels of the Massachusetts Comprehensive Assessment System (MCAS) test anxiety. It appears that few studies have examined levels of high school test anxiety in regards to this specific high-stakes MCAS exit exam required for high school graduation. A two-phase sequential mixed-methods research design was used to survey (N=156) 10th grade students represented by a sampling of (n=80) students with low socioeconomic status and (n=76) students with high socioeconomic status regarding their levels of test anxiety in relation to upcoming MCAS testing. A multiple regression analysis was used to measure the relationship between the predictor variables (gender, socioeconomic status, perceived teacher anxiety, and student preparedness) with the criterion variable of student test anxiety using the Test Anxiety Inventory (TAI). Personal interviews with (n=20) volunteer students provided rich explanations of students’ academic self-efficacy, their perceptions of their performance on the upcoming MCAS exam, and their use of strategies to reduce their levels of test anxiety. Personal interviews with (n=12) volunteer school administrators and teachers provided descriptions of their perceptions of how test anxiety affected their students’ performance. A major quantitative finding of this study was that the variables of student socioeconomic status and student ratings of teacher anxiety accounted for the variance in students’ levels of surveyed test anxiety (R2 = .06, p = .033, small to medium effect size). These results indicate that different student populations vary in their readiness skills to successfully participate in consequential testing situations. Consequently, high-test anxious students would require emotional preparation as well as academic preparation when confronting high-stakes testing. The results have the potential to re-shape the format of schools’ MCAS test preparation efforts.
Resumo:
Purpose. The purpose of this randomized control repeated measures trial was to determine the effectiveness of a self-management intervention led by community lay workers called promotoras on the health outcomes of Mexican Americans with type 2 diabetes living in a major city on the Texas - Mexico border. The specific aims of this study, in relation to the intervention group participants, were to: (1) decrease the glycosylated hemoglobin (A1c) blood levels at the six-month assessment, (2) increase diabetes knowledge at the three and six-month assessments, and (3) strengthen the participants' beliefs in their ability to manage diabetes at the three and six-month assessments.^ Methods. One hundred and fifty Mexican American participants were recruited at a Catholic faith-based clinic and randomized into an intervention group and a usual-care control group. Personal characteristics, acculturation and baseline A1c, diabetes knowledge and diabetes health beliefs were measured. The six-month, two-phase intervention was culturally specific and it was delivered entirely by promotoras. Phase One of the intervention consisted of sixteen hours of participative group education and bi-weekly telephone contact follow-up. Phase Two consisted of bi-weekly follow-up using inspirational faith-based health behavior change postcards. The A1c levels, diabetes knowledge and diabetes health beliefs were measured at baseline, and three and six months post-baseline. The mean changes between the groups were analyzed using analysis of covariance. ^ Results. The 80% female sample, with a mean age of 58 years, demonstrated very low: acculturation, income, education, health insurance coverage, and strong Catholicism. No significant changes were noted at the three-month assessment, but the mean change of the A1c levels (F (1, 148 = 10.28, p < .001) and the diabetes knowledge scores (F (1, 148 = 9.0, p < .002) of the intervention group improved significantly at six months, adjusting for health insurance coverage. The diabetes health belief scores decreased in both groups.^ Conclusions. This study demonstrated that an intervention led by promotoras could result in decreased A1c levels and increased diabetes knowledge in spite of the very low acculturation, educational level and insurance coverage of the intervention group participants. Clinical implications and recommendations for future research are suggested. ^
Resumo:
The 21st Annual Biochemical Engineering Symposium was held at Colorado State University on April 20, 1991. The primary goals of this symposium series are to provide an opportunity for students to present and publish their research work and to promote informal discussions on biochemical engineering research. Contents High Density Fed-Batch Cultivation and Energy Metabolism of Bacillus thuringtensis; W.-M. Liu, V. Bihari, M. Starzak, and R.K. Bajpai Influences of Medium Composition and Cultivation Conditions on Recombinant Protein Production by Bacillus subtilis; K. Park, P.M. Linzmaier, and K.F. Reardon Characterization of a Foreign Gene Expression in a Recombinant T7 Expression System Infected with λ Phages; F. Miao and D.S. Kompala Simulation of an Enzymatic Membrane System with Forced Periodic Supply of Substrate; N. Nakaiwa, M. Yashima, L.T. Fan, and T. Ohmori Batch Extraction of Dilut Acids in a Hollow Fiber Module; D.G. O'Brien and C.E. Glatz Evaluation of a New Electrophoretic Device for Protein Purification; M.-J. Juang and R.G. Harrison Crossflow Microfiltration and Membrane Fouling for Yeast Cell Suspension; S. Redkar and R. Davis Interaction of MBP-β-Galactosidase Fusion Protein with Starch; L. Taladriz and Z. Nikolov Predicting the Solubility of Recombinant Proteins in Escherichia coli; D.L. Wilkinson and R.G. Harrison Evolution of a Phase-Separated, Gravity-Independent Bioractor; P.E. Villeneuve and E.H. Dunlop A Strategy for the Decontamination of Soils Containing Elevated Levels of PCP; S. Ghoshal, S. K. Banelji, and RK. Bajpai Practical Considerations for Implementation of a Field Scale In-Situ Bioremediation Project; J.P. McDonald, CA Baldwin, and L.E. Erickson Parametric Sensitivity Studies of Rhizopus oligosporus Solid Substrate Fermentation; J. Sargantanis, M.N. Karim, and V.G. Murphy, and RP. Tengerdy Production of Acetyl-Xylan Esterase from Aspergillus niger; M.R Samara and J.C. Linden Biological and Latex Particle Partitioning in Aqueous Two-Phase Systems; D.T.L. Hawker, RH. Davis, P.W. Todd, and R Lawson Novel Bioreactor /Separator for Microbial Desulfurization of Coal; H. Gecol, RH. Davis, and J .R Mattoon Effect of Plants and Trees on the Fate, Transport and Biodegradation of Contaminants in the Soil and Ground Water; W. Huang, E. Lee, J.F. Shimp, L.C. Davis, L.E. Erickson, and J.C. Tracy Sound Production by Interfacial Effects in Airlift Reactors; J. Hua, T.-Y. Yiin, LA Glasgow, and L.E. Erickson Soy Yogurt Fermentation of Rapid Hydration Hydrothermal Cooked Soy Milk; P. Tuitemwong, L.E. Erickson, and D.Y.C. Fung Influence of Carbon Source on Pentachlorophenol Degradation by Phanerochaete chrysosportum in Soil; C.-Y.M. Hsieh, RK. Bajpai, and S.K. Banerji Cellular Responses of Insect Cells Spodopiera frugiperda -9 to Hydrodynamic Stresses; P.L.-H. Yeh and RK. Bajpa1 A Mathematical Model for Ripening of Cheddar Cheese; J. Kim, M. Starzak, G.W. Preckshoi, and R.K. Bajpai
Resumo:
This volume contains the Proceedings of the Twenty-Sixth Annual Biochemical Engineering Symposium held at Kansas State University on September 21, 1996. The program included 10 oral presentations and 14 posters. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of some of the papers; many of the papers will be published in full elsewhere. A listing of those who attended is given below. ContentsForeign Protein Production from SV40 Early Promoter in Continuous Cultures of Recombinant CHO Cells - Gautam Banik, Paul Todd, and Dhinakar Kampala Enhanced Cell Recruitment Due to Cell-Cell Interactions - Brad Farlow and Matthias Nollert The Recirculation of Hybridoma Suspension Cultures: Effects on Cell Death, Metabolism and Mab Productivity - Peng Jin and Carole A. Heath The Importance of Enzyme Inactivation and Self-Recovery in Cometabolic Biodegradation of Chlorinated Solvents - Xi-Hui Zhang, Shanka Banerji, and Rakesh Bajpai Phytoremediation of VOC contaminated Groundwater using Poplar Trees - Melissa Miller, Jason Dana, L.C. Davis, Murlidharan Narayanan, and L.E. Erickson Biological Treatment of Off-Gases from Aluminum Can Production: Experimental Results and Mathematical Modeling - Adeyma Y. Arroyo, Julio Zimbron, and Kenneth F. Reardon Inertial Migration Based Separation of Chlorella Microalgae in Branched Tubes - N.M. Poflee, A.L. Rakow, D.S. Dandy, M.L. Chappell, and M.N. Pons Contribution of Electrochemical Charge to Protein Partitioning in Aqueous Two-Phase Systems - Weiyu Fan and Charles C. Glatz Biodegradation of Some Commercial Surfactants Used in Bioremediation - Jun Gu, G.W. Preckshot, S.K. Banerji, and Rakesh Bajpai Modeling the Role of Biomass in Heavy Metal Transport Ln Vadose Zone - K.V. Nedunuri, L.E. Erickson, and R.S. Govindaraju Multivariable Statistical Methods for Monitoring Process Quality: Application to Bioinsecticide Production by 73 89 Bacillus Thuringiensis - c. Puente and M.N. Karim The Use of Polymeric Flocculants in Bacterial Lysate Streams - H. Graham, A.S. Cibulskas and E.H. Dunlop Effect of Water Content on transport of Trichloroethylene in a Chamber with Alfalfa Plants - Muralidharan Narayanan, Jiang Hu, Lawrence C. Davis, and Larry E. Erickson Detection of Specific Microorganisms using the Arbitrary Primed PCR in the Bacterial Community of Vegetated Soil - X. Wu and L.C. Davis Flux Enhancement Using Backpulsing - V.T. Kuberkar and R.H. Davis Chromatographic Purification of Oligonucleotides: Comparison with Electrophoresis - Stephen P. Cape, Ching-Yuan Lee, Kevin Petrini, Sean Foree, Micheal G. Sportiello and Paul Todd Determining Singular Arc Control Policies for Bioreactor Systems Using a Modified Iterative Dynamic Programming Algorithm - Arun Tholudur and W. Fred Ramirez Pressure Effect on Subtilisins Measured via FTIR, EPR and Activity Assays, and Its Impact on Crystallizations - J.N. Webb, R.Y. Waghmare, M.G. Bindewald, T.W. Randolph, J.F. Carpenter, C.E. Glatz Intercellular Calcium Changes in Endothelial Cells Exposed to Flow - Laura Worthen and Matthias Nollert Application of Liquid-Liquid Extraction in Propionic Acid Fermentation - Zhong Gu, Bonita A. Glatz, and Charles E. Glatz Purification of Recombinant T4 Lysozyme from E. Coli: Ion-Exchange Chromatography - Weiyu Fan, Matt L. Thatcher, and Charles E. Glatz Recovery and Purification of Recombinant Beta-Glucuronidase from Transgenic Corn - Ann R. Kusnadi, Roque Evangelista, Zivko L. Nikolov, and John Howard Effects of Auxins and cytokinins on Formation of Catharanthus Roseus G. Don Multiple Shoots - Ying-Jin Yuan, Yu-Min Yang, Tsung-Ting Hu, and Jiang Hu Fate and Effect of Trichloroethylene as Nonaqueous Phase Liquid in Chambers with Alfalfa - Qizhi Zhang, Brent Goplen, Sara Vanderhoof, Lawrence c. Davis, and Larry E. Erickson Oxygen Transport and Mixing Considerations for Microcarrier Culture of Mammalian Cells in an Airlift Reactor - Sridhar Sunderam, Frederick R. Souder, and Marylee Southard Effects of Cyclic Shear Stress on Mammalian Cells under Laminar Flow Conditions: Apparatus and Methods - M.L. Rigney, M.H. Liew, and M.Z. Southard
Resumo:
The 24th Biochemical Engineering Symposium was held 9-10 September 1994 at the YMCA of the Rockies conference center in Estes Park, Colorado, under the sponsorship of the Department of Chemical Engineering at the University of Colorado. Previous symposia in this series have been hosted by Kansas State University (1st, 3rd, 5th, 9th, 12th, 16th, 20th), University of Nebraska-Lincoln (2nd, 4th), Iowa State University (6th, 7th, 10th, 13th, 17th, 22nd), University of Missouri-Columbia (8th, 14th, 19th), Colorado State University (11th, 15th, 21st), University of Colorado (18th), and the University of Oklahoma (23rd). The next symposium is scheduled to be held at the University of Missouri-Columbia. The symposia are devoted to talks by students about their ongoing research. Because final publication usually takes place elsewhere, the papers included in the proceedings are brief, and often cover work in progress. ContentsIn-Well Aeration: An Innovative Subsurface Remediation TechnologyPrashant Gandhi, X. Yang, L.E. Erickson, and L. T. Fan; Kansas State University Expression of an Antimicrobial Peptide Analog in Eacherlchill coliChris Haught and Roger G. Harrison; University of Oklahoma Using High-frequency Backpulaing to Maximize Croasflow Filtration PerformanceSanjeev G. Redkar and Robert H. Davis; University of Colorado Low Molecular Weight Organic Compositions of Acid Waters from Vegetable Oil SoapstocksSteven L. Johansen, Arunthathi Sivasothy, Peter J. Reilly, and Earl G. Hammond; Iowa State University; Michael K. Dowd; U.S. Department of Agriculture Gas Phase Composition Effects on Suspension Cultures of Taxus cuspidata Noushin Mirjalili and James C. Linden; Colorado State University Cybernetic Modeling of Spontaneous Oscillations in Continuous Cultures of Ssccharomyces cerevisiaeKenneth D. Jones and Dhinakar S. Kompala; University of Colorado The Effect of Turbulent Shear on Calcium Mobilization in Mammalian CellsChristopher M. Cannizzaro, Pradyumna K. Namdev, and Eric H. Dunlop; Colorado State University Experimental Studies of Droplet Ejection at the Free Surface In Sparged ReactorsT. Y. Yiin, L A. Glasgow, and L. E. Erickson; Kansas State University The Role of Domain E (Starch-Binding Region) on the Activity of a Bacillus macersns Cyclodextrln GlucanotransferaseHai-yin Chang, Trang Le, and Zivko L. Nikolov; Iowa State University Use of the Rotating Wall Vessel for Study of Plant Cell Suspension CulturesXinzhi Sun and James C. Linden; Colorado State University A Novel Counter-Current Distribution Apparatus for the Study of Multi-Stage Aqueous Two-Phase Extraction of Biomolecules and Cell ParticlesMartin R. Guinn and Paul Todd; University of Colorado The Dynamics of Unhooking and Contraction of a Polyelectrolyte Chain Around an Isolated PostLin Zhang and Edith M. Sevick; University of Colorado A Laboratory Study of the Fate of Trichloroathylene and 1,1,1-Trlchloroathane In the Presence of Alfalfa PlantsMuralidharan Narayanan, Ryan M. Green, Lawrence C. Davis, and Larry E. Erickson; Kansas State University Modeling the Fate of Pyrene In the RhIzosphereS.K. Santharam, LE. Erickson, and L. T. Fan; Kansas State University Derivatization of MaltooligosaccharidesDaniela Prinz, Peter J. Reilly, and Zivko L. Nikolov; Iowa State University Probing Surfactant-Protein Binding by EPA SpectroscopyNarendra B. Bam, Yale University; Theodore W. Randolph; University of Colorado Optimization of a Stir-Cell Bioreactor for In Vitro Production of RNANeal T. Williams, Kim A. Wicklund, and Robert H. Davis; University of Colorado
Resumo:
Igneous rock units were encountered at four of the five sites drilled on Leg 30 of the Deep Sea Drilling Project. These units uncluded a diabase sill at Site 285, a basalt underlain by a gabbro at 286, two basalt flows at 287, and a basalt flow at 289. Site 285 is located approximately in the center of the South Fiji Basin, Site 286 is adjacent to a filled portion of the New Hebrides Trench, Site 287 is adjacent to a basement high in the Coral Sea Basin, and Sites 288 and 289 are located on the Ontong-Java Plateau north of the Solomon Islands (Figure 1). Figure 2 presents generalized lithologic columns for the igneous rock units found at these sites. When a unit number is given, e.g., Site 286, Unit 4 basalt, this number conforms with the unit number assigned to it in the overall stratigraphic sequence of that hole as defined in the individual Site Reports in this volume. Unless otherwise stated, depths are given as measured from the sediment-igneous rock contact rather than the mudline.
Resumo:
A sediment core from the West Spitsbergen continental margin was studied to reconstruct climate and paleoceanographic variability during the last ~9 ka in the eastern Fram Strait. Our multiproxy evidence suggests that the establishment of the modern oceanographic configuration in the eastern Fram Strait occurred stepwise, in response to the postglacial sea-level rise and the related onset of modern sea-ice production on the shallow Siberian shelves. The late Early and Mid Holocene interval (9 to 5 ka) was generally characterized by relatively unstable conditions. High abundance of the subpolar planktic foraminifer species Turborotalita quinqueloba implies strong intensity of Atlantic Water (AW) inflow with high productivity and/or high AW temperatures, resulting in a strong heat flux to the Arctic. A series of short-lived cooling events (8.2, 6.9. and 6.1 ka) occurred superimposed on the warm late Early and Mid Holocene conditions. Our proxy data imply that simultaneous to the complete postglacial flooding of Arctic shallow shelves and the initiation of modern sea-ice production, strong advance of polar waters initiated modern oceanographic conditions in the eastern Fram Strait at ~5.2 ka. The Late Holocene was marked by the dominance of the polar planktic foraminifer species Neogloboquadrina pachyderma, a significant expansion of sea ice/icebergs, and strong stratification of the water column. Although planktic foraminiferal assemblages as well as sea surface and subsurface temperatures suggest a return of slightly strengthened advection of subsurface Atlantic Water after 3 ka, a relatively stable cold-water layer prevailed at the sea surface and the study site was probably located within the seasonally fluctuating marginal ice zone during the Neoglacial period.
Resumo:
Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.
Resumo:
Subduction related mafic/ultramafic complexes marking the suture between the Wilson Terrane and the Bowers Terrane in northern Victoria Land (Antarctica) are well-suited for evaluating the magmatic and structural evolu- tion at the Palaeo-Pacific continental margin of Gondwana. One of these intru- sions is the "Tiger Gabbro Complex" (TGC), which is located at the southern end of the island-arc type Bowers Terrane. The TGC is an early Palaeozoic island-arc related layered igneous complex characterized by extraordinarly fresh sequences of ultramafic, mafic and evolved lithologies and extensive development of high-temperature high-strain zones. The goal of the present study is to establish the kinematic, petrogenetic and temporal development of the TGC in order to evaluate the magmatic and structural evolution of the deep crustal roots of this Cambrian-aged island-arc. Fieldwork during GANOVEX X was carried out to provide insight into: (i) the spatial relations between the different igneous lithologies of the TGC, (ii) the nature of the contact between the TGC and Bowers Terrane, and (iii) the high-temperature shear zones exposed in parts of the TGC. Here, we report the results of detailed field and petrological observations combined with new geochronological data. Based on these new data, we tentatively propose a petrogenetic-kinematic model for the TGC, which involves a two-phase evolution during the Ross orogeny. These phases can be summarized as: (i) an early phase (maximum age c. 530 Ma) involving tectono-magmatic processes that were active at the deep crustal level represented by the TGC within the Bowers island arc and within a general NE-SW directed contractional regime and (ii) a late phase (maximum age c. 490 Ma) attributed to the late Ross orogenic intrusion of the TGC into the higher-crustal metasedimentary country rocks of the Bowers Terrane under NE-SW directed horizontal maximum stress and subsequent cooling.
Resumo:
In order to investigate a possible connection between tropical northeast (NE) Atlantic primary productivity, Atlantic meridional overturning circulation (AMOC), and drought in the Sahel region during Heinrich Stadial 1 (HS1), we used dinoflagellate cyst (dinocyst) assemblages, Mg/Ca based reconstructed temperatures, stable carbon isotopes (d13C) and geochemical parameters of a marine sediment core (GeoB 9508-5) from the continental slope offshore Senegal. Our results show a two-phase productivity pattern within HS1 that progressed from an interval of low marine productivity between ~ 19 and 16 kyr BP to a phase with an abrupt and large productivity increase from ~ 16 to 15 kyr BP. The second phase is characterized by distinct heavy planktonic d13C values and high concentrations of heterotrophic dinocysts in addition to a significant cooling signal based on reconstructions of past sea surface temperatures (SST). We conclude that productivity variations within HS1 can be attributed to a substantial shift of West African atmospheric processes. Taken together our results indicate a significant intensification of the North East (NE) trade winds over West Africa leading to more intense upwelling during the last millennium of HS1 between ~ 16 and 15 kyr BP, thus leaving a strong imprint on the dinocyst assemblages and sea surface conditions. Therefore, the two-phase productivity pattern indicates a complex hydrographic setting suggesting that HS1 cannot be regarded as uniform as previously thought.