773 resultados para Tripartite entanglement
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
Summary: This article provides a review of the contribution of Axel Honneth’s model of recognition for critical social work. While Honneth’s tripartite conceptualisation of optimal identity-formation is positively appraised, his analysis of the link between misrecognition, the experience of shame and eventual sense of moral outrage, is contested. Drawing on a range of sources, including the sociology of shame, Honneth’s ideas about the emotional antecedents of emancipatory action are revised to guide critical social work with misrecognised service users.
Findings: The intellectual background to Honneth’s recognition model, emanating from leading German philosophers, is described and its application to social work set out. Even so, Honneth’s model is found to be deficient in one primary regard: its assumption about the emotional antecedents to quests for withheld recognition is misapprehended. In particular, the argument in this article is that the ubiquitous emotion of shame, which Honneth argues flows from misrecognition, must be carefully addressed through the medium of relationship, otherwise it might lead to repressed shame and frustrated attempts at social struggle. To this end, a social work process is delineated for dealing with shame, following episodes of misrecognition.
Applications: Honneth’s model of recognition, along with revised ideas about how to recognise and manage shame, is incorporated into a conceptual framework for critical social work practice. With this renewed understanding of the impact of shame, following misrecognition, social workers should be better equipped conceptually to enable service users to take action for empowerment.
Resumo:
The entanglement of identity and personal attire in colonial settings is explored through consideration of a tattered set of clothes from late sixteenth-early seventeenth-century Ireland incorporating elements of Irish, English, and Scots fashion. Reconsideration of the clothing, recovered from a bog, provides a rare opportunity to explore the physical manifestations of processes of hybridity and mimesis, as well as the pragmatic accommodations of impoverishment and displacement in colonial settings. In addition to considering the role of material culture in colonial identity formation and negotiation, examination of what has become known as the Dungiven costume also speaks to the ongoing legacy of early modern colonial encounters, as the cultural associations of the garments, and by extension their past wearer(s), continue to be subjected to the politically charged nature of identity politics in contemporary Northern Ireland.
Resumo:
Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all those situations where stationary information carriers are involved. In the majority of the communication schemes relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based mechanism of a clear physical interpretation. © 2013 American Physical Society.
Resumo:
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo, and the spectral function for a large range of interspecies interactions and find that even in such small systems evidence of Anderson's orthogonality catastrophe can be witnessed.
Resumo:
A string of repulsively interacting particles exhibits a phase transition to a zigzag structure, by reducing the transverse trap potential or the interparticle distance. Based on the emergent symmetry Z2 it has been argued that this instability is a quantum phase transition, which can be mapped to an Ising model in transverse field. An extensive Density Matrix Renormalization Group analysis is performed, resulting in an high-precision evaluation of the critical exponents and of the central charge of the system, confirming that the quantum linear-zigzag transition belongs to the critical Ising model universality class. Quantum corrections to the classical phase diagram are computed, and the range of experimental parameters where quantum effects play a role is provided. These results show that structural instabilities of one-dimensional interacting atomic arrays can simulate quantum critical phenomena typical of ferromagnetic systems.
Resumo:
Reversible work extraction from identical quantum systems via collective operations was shown to be possible even without producing entanglement among the sub-parts. Here, we show that implementing such global operations necessarily imply the creation of quantum correlations, as measured by quantum discord. We also reanalyze the conditions under which global transformations outperform local gates as far as maximal work extraction is considered by deriving a necessary and sufficient condition that is based on classical correlations.
Resumo:
We propose a feedback control mechanism for the squeezing of the phononic mode of a mechanical oscillator. We show how, under appropriate working conditions, a simple adiabatic approach is able to induce mechanical squeezing. We then go beyond the limitations of such a working point and demonstrate the stationary squeezing induced by using repeated measurements and reinitialization of the state of a two-level system ancilla coupled to the oscillator. Our nonadaptive feedback loop offers interesting possibilities for quantum state engineering and steering in open-system scenarios.
Resumo:
We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matterlike system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical nonlocality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering devices, possibly empowered by the use of quantum and optimal control techniques. The results that we discuss are instrumental to the promotion of hybrid optomechanical devices as promising experimental platforms for the study of nonclassicality at the genuine mesoscopic level.
Resumo:
Death receptor activation triggers recruitment of FADD, which via its death effector domain (DED) engages the DEDs of procaspase 8 and its inhibitor FLIP to form death-inducing signalling complexes (DISCs). The DEDs of FADD, FLIP and procaspase 8 interact with one another using two binding surfaces defined by α1/α4 and α2/α5 helices, respectively. Here we report that FLIP has preferential affinity for the α1/α4 surface of FADD, whereas procaspase 8 has preferential affinity for FADD's α2/α5 surface. These relative affinities contribute to FLIP being recruited to the DISC at comparable levels to procaspase 8 despite lower cellular expression. Additional studies, including assessment of DISC stoichiometry and functional assays, suggest that following death receptor recruitment, the FADD DED preferentially engages FLIP using its α1/α4 surface and procaspase 8 using its α2/α5 surface; these tripartite intermediates then interact via the α1/α4 surface of FLIP DED1 and the α2/α5 surface of procaspase 8 DED2.
Resumo:
El conde Partinuplés (first published 1653) is one of only two extant plays written by the Sevillan poet/dramatist Ana Caro Mallén de Soto (‘la décima musa sevillana’). Despite McKendrick's dismissal of the play as ‘extremely bad’, it has been the object of substantial critical scrutiny since the 1970s, impelled in great part by the production of modern editions (Luna and Delgado) and by Kaminsky's bio-biographical study (1973). Two responses have dominated: analysis of the play's imaginative reconceptualization of source material (most notably the Classical myth of Cupid and Psyche as contained in Apuleius and transmitted via the anonymous French chivalric romance Portonopeus de Blois; and more contemporary models, such as Calderón's La vida es sueño); discussions of the play from a gender/feminist perspective. There is some inevitable entanglement in these approaches, areas of ideological concurrence, but also of contradiction. This article will offer a critical synthesis of these lines of enquiry around an analysis of the play's patterns of non-identical repetition and, following Hubert's theory of ‘double movement’, will move beyond these to consider the generative and potentially transcendent nature of the interplay of inscription (text) and transcription (interpretive performance). A subversive strategy of elusion underpins this interference, a dynamic, mobile frame within which ‘envidia’ (‘celos’) functions as a prominent dramatic catalyst, directed outwards, and mobilized both as a potent catalyst for the female dramatist's artistic creativity and as an antagonistic interrogation of broader socio-cultural forms of inequality. The play's (new) marvellous versions and inversions expand the functions of the sign beyond Renaissance resemblance and repetition, challenging its promotion of unity and stable identity, and opening up an interactive space between the represented (world/product) and the representing (stage/process). The power of authorities, as figured in/through the dramatic and rhetorical devices of the play, is self-consciously precarious, but it is this very anxious articulation that challenges the very authority of power.
Resumo:
In the context of bipartite bosonic systems, two notions of classicality of correlations can be defined: P-classicality, based on the properties of the Glauber-Sudarshan P-function; and C-classicality, based on the entropic quantum discord. It has been shown that these two notions are maximally inequivalent in a static (metric) sense -- as they coincide only on a set of states of zero measure. We extend and reinforce quantitatively this inequivalence by addressing the dynamical relation between these types of non-classicality in a paradigmatic quantum-optical setting: the linear mixing at a beam splitter of a single-mode Gaussian state with a thermal reference state. Specifically, we show that almost all P-classical input states generate outputs that are not C-classical. Indeed, for the case of zero thermal reference photons, the more P-classical resources at the input the less C-classicality at the output. In addition, we show that the P-classicality at the input -- as quantified by the non-classical depth -- does instead determine quantitatively the potential of generating output entanglement. This endows the non-classical depth with a new operational interpretation: it gives the maximum number of thermal reference photons that can be mixed at a beam splitter without destroying the output entanglement.
Resumo:
The subject of identity continues to attract widespread interest and debate in the social sciences. The nature of who we are, our potential to be different, and our similarity with others, underpins many present-day social issues. This paper contributes to this debate by examining critically the work of Axel Honneth on optimal identity-formation. Although broadly supporting Honneth’s chief construct of inter-personal recognition, a gap in his thinking is highlighted and addressed through proffering a fourth dimension to his tripartite model. This additional dimension requires demonstrations of recognition that instil hope in the face of hardship and empower positive transformations in identity. The implications of this reworked model for social work are then considered in terms of a range of approaches that can be utilised to build flourishing identities characterised by self-esteem, self-confidence, self-respect and self-belief.
Resumo:
The last 20 years have seen significant advances in cancer care in Northern Ireland, leading to measureable improvements in patient outcomes. Crucial to this transformation has been an ethos that recognizes the primacy role of research in effecting heath care change. The authors' model of a cross-sectoral partnership that unites patients, scientists, health care professionals, hospital trusts, bioindustry, and government agencies can be truly transformative, empowering tripartite clinical-academic-industry efforts that have already yielded significant benefit and will continue to inform strategy and its implementation going forward.
Resumo:
Nonclassicality is a key ingredient for quantum enhanced technologies and experiments involving macro- scopic quantum coherence. Considering various exactly-solvable quantum-oscillator systems, we address the role played by the anharmonicity of their potential in the establishment of nonclassical features. Specifically, we show that a monotonic relation exists between the the entropic nonlinearity of the considered potentials and their ground state nonclassicality, as quantified by the negativity of the Wigner function. In addition, in order to clarify the role of squeezing--which is not captured by the negativity of the Wigner function--we focus on the Glauber-Sudarshan P-function and address the nonclassicality/nonlinearity relation using the entanglement potential. Finally, we consider the case of a generic sixth-order potential confirming the idea that nonlinearity is a resource for the generation of nonclassicality and may serve as a guideline for the engineering of quantum oscillators.