942 resultados para Translational isomerism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caspases are best known for their role in apoptosis. More recently, they have gained prominence as critical mediators of innate immune responses. The so-called 'inflammatory caspases' include human caspase-1, -4, -5 and -12 and murine caspase-1, -11 and -12. Of these, caspase-1 is best characterized and serves as the prototype for our understanding of the processing, activation and function of inflammatory caspases. Like their apoptotic counterparts, inflammatory caspases are produced as inactive zymogens and require activation to become proteolytically active. Caspase-1 is activated within the inflammasome, a large cytosolic protein complex that is induced by a growing number of endogenous, microbial, chemical or environmental stimuli. The importance of caspase-1 in initiating innate immune responses is demonstrated by its role in cleaving pro-IL-1 beta and pro-IL-18 to their biologically active forms. New functions have also been implicated, as these proteases and the mechanisms underlying their activation and regulation emerge as important mediators of human health and disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron uptake and transcriptional regulation by the enantiomeric siderophores pyochelin (Pch) and enantio-pyochelin (EPch) of Pseudomonas aeruginosa and Pseudomonas fluorescens, respectively, are stereospecific processes. The iron-loaded forms of Pch (ferriPch) and of EPch (ferriEPch) are recognized stereospecifically (i) at the outer membrane by the siderophore receptors FptA in P. aeruginosa and FetA in P. fluorescens and (ii) in the cytoplasm by the two AraC-type regulators PchR, which are activated by their cognate siderophore. Here, stereospecific siderophore recognition is shown to occur at the inner membrane also. In P. aeruginosa, translocation of ferriPch across the inner membrane is carried out by the single-subunit siderophore transporter FptX. In contrast, the uptake of ferriEPch into the cytoplasm of P. fluorescens was found to involve a classical periplasmic binding protein-dependent ABC transporter (FetCDE), which is encoded by the fetABCDEF operon. Expression of a translational fetA-gfp fusion was repressed by ferric ions, and activated by the cognate siderophore bound to PchR, thus resembling the analogous regulation of the P. aeruginosa ferriPch transport operon fptABCX. The inner-membrane transporters FetCDE and FptX were expressed in combination with either of the two siderophore receptors FetA and FptA in a siderophore-negative P. aeruginosa mutant deleted for the fptABCX operon. Growth tests conducted under iron limitation with ferriPch or ferriEPch as the iron source revealed that FptX was able to transport ferriPch as well as ferriEPch, whereas FetCDE specifically transported ferriEPch. Thus, stereospecific siderophore recognition occurs at the inner membrane by the FetCDE transporter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease the CYP2D6 activity in vitro and are present in a minority of patients with chronic hepatitis C infection. We investigated whether LKM-1 antibodies might reduce the CYP2D6 activity in vivo. All patients enrolled in the Swiss Hepatitis C Cohort Study and tested for LKM-1 antibodies were assessed (n = 1723): 10 eligible patients were matched with patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specific substrate using the dextromethorphan/dextrorphan metabolic ratio to classify patients into four activity phenotypes. All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with the CYP2D6 genotype in most LKM-negative patients, whereas only three LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was sixfold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, P = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies. In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several tumor necrosis factor receptor (TNFR) family members activate both the classical and the alternative NF-κB pathways. However, how a single receptor engages these two distinct pathways is still poorly understood. Using lymphotoxin β receptor (LTβR) as a prototype, we showed that activation of the alternative, but not the classical, NF-κB pathway relied on internalization of the receptor. Further molecular analyses revealed a specific cytosolic region of LTβR essential for its internalization, TRAF3 recruitment, and p100 processing. Interestingly, we found that dynamin-dependent, but clathrin-independent, internalization of LTβR appeared to be required for the activation of the alternative, but not the classical, NF-κB pathway. In vivo, ligand-induced internalization of LTβR in mesenteric lymph node stromal cells correlated with induction of alternative NF-κB target genes. Thus, our data shed light on LTβR cellular trafficking as a process required for specific biological functions of NF-κB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arenaviruses are enveloped negative-strand RNA viruses that contain a bi-segmented genome. They are rodent-borne pathogens endemic to the Americas and Africa, with the exception of lymphocytic choriomeningitis virus (LCMV) that is world-wide distributed. The arenaviruses include numerous important human pathogens including the Old World arenavirus Lassa virus (LASV), the causative agent of a severe viral hemorrhagic fever in humans with several hundred thousand infections per year in Africa and thousands of deaths. Viruses are obligatory intracellular parasites, strictly depending on cellular processes and factors to complete their replication cycle. The binding of a virus to target cells is the first step of every viral infection, and is mainly mediated by viral proteins that can directly engage cellular receptors, providing a key determinant for viral tropism. This early step of infection represents a promising target to block the pathogen before it can take control over the host cell. Old World arenaviruses, such as LASV and LCMV, bind to host cells via attachment to their main receptor, dystroglycan (DG), an ubiquitous receptor for extracellular matrix proteins. The engagement of DG by LASV results in a fast internalization and transfer the virus to late endosomal compartment suggesting that the virus binding to DG causes marked changes in the dynamics of the receptor. These events could result in the clustering of the receptor and subsequent induction of signaling that could be modulated by the virus. Recently, numerous findings also suggest the presence of alternative receptor(s) for LASV in absence of the main DG receptor. In my first project, I was interested to investigate the effects of virus-receptor binding on the tyrosine phosphorylation of the cytoplasmic domain of DG and to test if this post-translational modification was crucial for the internalization of the LASV-receptor complex. We found that engagement of cellular DG by a recombinant LCMV expressing the envelope GP of LASV in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. Virus-induced dissociation of utrophin and consequent virus internalization were affected by the broadly specific tyrosine kinase inhibitor genistein. We speculate that the detachment of virus- bound DG from the actin-based cytoskeleton following DG phosphorylation may facilitate subsequent endocytosis of the virus-receptor complex. In the second project, I was interested to characterize the newly indentified LASV alternative receptor Axl in the context of productive arenavirus infection. In a first step, we demonstrated that Axl supports productive infection by rLCMV-LASVGP in a DG-independent manner. In line with previous studies, cell entry of rLCMV-LASVGP via Axl was less efficient when compared to functional DG. Interestingly, Axl-mediated infection showed rapid kinetics similar to DG-dependent entry. Using a panel of inhibitors, we found that Axl-mediated cell entry of rLCMV-LASVGP involved a clathrin-independent pathway that critically depended on actin and dynamin and was sensitive to EIPA but not to PAK inhibitors, compatible with a macropinocytosis-like mechanism of entry. In a next step, we aimed to investigate the molecular mechanism by which rLCMV-LASVGP recognizes Axl. Phosphatidylserine (PS) is the natural ligand of Axl via the adaptor protein Gas6. We detected the presence of PS in the envelope of Old World arenaviruses, suggesting that PS could mediate Axl-virus binding, in a mechanism of apoptotic mimicry already described for other viruses. Whether envelope PS and/or the GP of LASV plays any role in virus entry via Axl is still an open question. The molecular mechanisms underlying host cell-virus interaction are of particular interest to answer basic scientific questions as well as to apply key findings to translational research. Understanding pathogen induced-signaling and its link to invasion of the host cell is of great importance to develop drugs for therapeutic intervention against highly pathogenic viruses like LASV. - Les Arenavirus sont des virus enveloppés à ARN négatifs organisés sous forme de génome bisegmenté. Ils sont véhiculés par les rongeurs et se retrouvent de manière endémique aux Amériques et en Afrique avec l'exception du virus de la chorioméningite lymphocytaire (LCMV) qui lui est distribué mondialement. De nombreux pathogènes humains font parti de la famille des Arenavirus dont le virus de l'Ancien Monde Lassa (LASV), un agent responsable de fièvres hémorragiques sévères chez les humains. Le virus de Lassa cause plusieurs centaines de milliers d'infections par année en Afrique ainsi que des milliers de morts. De manière générale, les virus sont des parasites intracellulaires obligatoires qui dépendent strictement de processus et facteurs cellulaires pour clore leur cycle de réplication. L'attachement d'un virus à sa cellule cible représente la première étape de chaque infection virale et est principalement dirigée par des protéines virales qui interagissent directement avec leur récepteurs cellulaires respectifs fournissant ainsi un indicateur déterminant pour le tropisme d'un virus. Cette première étape de l'infection représente aussi une cible prometteuse pour bloquer le pathogène avant qu'il ne puisse prendre le contrôle de la cellule. Les Arenavirus de l'Ancien Monde comme LASV et LCMV s'attachent à la cellule hôte en se liant à leur récepteur principal, le dystroglycan (DG), un récepteur ubiquitaire pour les protéines de la matrice extracellulaire. La liaison du DG par LASV résulte en une rapide internalisation transférant le virus aux endosomes tardifs suggérant ainsi que l'attachement du virus au DG peut provoquer des changements marqués dans la dynamique moléculaire du récepteur. Ces événements sont susceptibles d'induire un regroupement du récepteur à la surface cellulaire, ainsi qu'une induction subséquente qui pourrait être, par la suite, modulée par le virus. Récemment, plusieurs découvertes suggèrent aussi la présence d'un récepteur alternatif pour LASV en l'absence du récepteur principal, le DG. Concernant mon premier projet, j'étais intéressée à étudier les effets de la liaison virus- récepteur sur la phosphorylation des acides aminés tyrosines se trouvant dans la partie cytoplasmique du DG, le but étant de tester si cette modification post-translationnelle était cruciale pour Γ internalisation du complexe LASV-DG récepteur. Nous avons découvert que l'engagement du récepteur DG par le virus recombinant LCMV, exprimant la glycoprotéine de LASV, dans des cellules épithéliales humaines induit une phosphorylation de résidu(s) tyrosine se situant dans le domaine cytoplasmique du DG. La liaison de la glycoprotéine de LASV au DG induit par la suite la dissociation de la protéine adaptatrice utrophine du complexe virus-DG récepteur. Nous avons observé que cette dissociation de l'utrophine, induite par le virus, ainsi que son internalisation, sont affectées par l'inhibiteur à large spectre des tyrosines kinases, la génistéine. Nous avons donc supposé que le détachement du virus, lié au récepteur DG, du cytosquelette d'actine suite à la phosphorylation du DG faciliterait l'endocytose subséquente du complexe virus-récepteur. Dans le second projet, j'étais intéressée à caractériser le récepteur alternatif Axl qui a été récemment identifié dans le contexte de l'infection productive des Arenavirus. Dans un premier temps, nous avons démontré que le récepteur alternatif Axl permet l'infection des cellules par le virus LCMV recombinant LASV indépendamment du récepteur DG. Conformément aux études publiées précédemment, nous avons pu observer que l'entrée du virus recombinant LASV via Axl est moins efficace que via le récepteur principal DG. De façon intéressante, nous avons aussi remarqué que l'infection autorisée par Axl manifeste une cinétique virale d'entrée similaire à celle observée avec le récepteur DG. Utilisant un éventail de différents inhibiteurs, nous avons trouvé que l'entrée du virus recombinant rLCMV-LASVGP via Axl implique une voie d'entrée indépendante de la clathrine et dépendant de manière critique de l'actine et de la dynamine. Cette nouvelle voie d'entrée est aussi sensible à l'EIPA contrairement aux inhibiteurs PAK indiquant un mécanisme d'entrée compatible avec un mécanisme de macropinocytose. L'étape suivante du projet a été d'investiguer le mécanisme moléculaire par lequel le virus recombinant rLCMV-LASVGP reconnaît le récepteur alternatif Axl. La phosphatidylsérine (PS) se trouve être un ligand naturel pour Axl via la protéine adaptatrice Gas6. Nous avons détecté la présence de PS dans l'enveloppe des Arenavirus du Vieux Monde suggérant que la PS pourrait médier la liaison du virus à Axl dans un mécanisme de mimétisme apoptotique déjà observé et décrit pour d'autres virus. Cependant, il reste encore à déterminer qui de la PS ou de la glycoprotéine de l'enveloppe virale intervient dans le processus d'entrée de LASV via le récepteur alternatif Axl. Les mécanismes moléculaires à la base de l'interaction entre virus et cellule hôte sont d'intérêts particuliers pour répondre aux questions scientifiques de base ainsi que dans l'application de découvertes clés pour la recherche translationnelle. La compréhension de la signalisation induite par les pathogènes ainsi que son lien à l'invasion de la cellule hôte est d'une importance considérable pour le développement de drogues pour l'intervention thérapeutique contre les virus hautement pathogènes comme LASV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and resultant transcriptional silencing. FMR1 silencing has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: There is promising but conflicting evidence to recommend the addition of probiotics to foods for prevention and treatment of allergy. Based on previous studies with fermented milk containing Lactobacillus paracasei NCC2461, we aimed to compare the effect of a powder form of the latter probiotic with the effect of a blend of Lactobacillus acidophilus ATCC SD5221 and Bifidobacterium lactis ATCC SD5219 in patients with allergic rhinitis. METHODS: A double-blind, randomized, cross-over study, involving 31 adults with allergic rhinitis to grass pollen, was performed outside the grass pollen season (registration number: NCT01233154). Subjects received each product for 4-weeks in two phases separated by a wash-out period of 6 to 8 weeks. A nasal provocation test was performed before and after each 4-week product intake period, and outcome parameters (objective and subjective clinical symptoms; immune parameters) were measured during and/or 24 hours after the test. RESULTS: Out of the 31 subject enrolled, 28 completed the study. While no effect was observed on nasal congestion (primary outcome), treatment with NCC2461 significantly decreased nasal pruritus (determined by VAS), and leukocytes in nasal fluid samples, enhanced IL-5, IL-13 and IL-10 production by peripheral blood mononuclear cells in an allergen specific manner and tended to decrease IL-5 secretion in nasal fluid, in contrast to treatment with the blend of L. acidophilus and B. lactis. CONCLUSIONS: Despite short-term consumption, NCC2461 was able to reduce subjective nasal pruritus while not affecting nasal congestion in adults suffering from grass pollen allergic rhinitis. The associated decrease in nasal fluid leukocytes and IL-5 secretion, and the enhanced IL-10 secretion in an allergen specific manner may partly explain the decrease in nasal pruritus. However, somewhat unexpected systemic immune changes were also noted. These data support the study of NCC2461 consumption in a seasonal clinical trial to further demonstrate its potentially beneficial effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outcome of a viral infection depends on the interplay between the host's capacity to trigger potent antiviral responses and viral mechanisms that counteract them. Although Toll-like receptor (TLR)-3, which recognizes virally derived double-stranded (ds) RNA, transmits downstream antiviral signaling through the TIR adaptor Trif (TICAM-1), viral RNA-sensing RIG-like helicases (RLHs) use the mitochondrial-bound CARD protein Cardif (IPS-1/MAVS/VISA). The importance of these two antiviral signaling pathways is reflected by the fact that both adaptors are inhibited through specific cleavage triggered by the hepatitis C virus serine protease NS3-4A. Here, we show that inactivation can also occur through cellular caspases activated by various pro-apoptotic signals. Upon caspase-dependent cleavage both adaptors loose their capacity to activate the transcription factors interferon regulatory factors (IRF) and NF-kappaB. Importantly, poliovirus infection triggers a caspase-dependent cleavage of Cardif, suggesting that some viruses may activate caspases not only as a mean to facilitate shedding and replication, but also to impair antiviral responses

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myocardium undergoing remodeling in vivo exhibits insulin resistance that has been attributed to a shift from the insulin-sensitive glucose transporter GLUT4 to the fetal, less insulin-sensitive, isoform GLUT1. To elucidate the role of altered GLUT4 expression in myocardial insulin resistance, glucose uptake and the expression of the glucose transporter isoforms GLUT4 and GLUT1 were measured in adult rat cardiomyocytes (ARC). ARC in culture spontaneously undergo dedifferentiation, hypertrophy-like spreading, and return to a fetal-like gene expression pattern. Insulin stimulation of 2-deoxy-D-glucose uptake was completely abolished on day 2 and 3 of culture and recovered thereafter. Although GLUT4 protein level was reduced, the time-course of unresponsiveness to insulin did not correlate with altered expression of GLUT1 and GLUT4. However, translocation of GLUT4 to the sarcolemma in response to insulin was completely abolished during transient insulin resistance. Insulin-mediated phosphorylation of Akt was not reduced, indicating that activation of phosphatidylinositol 3-kinase (PI3K) was preserved. On the other hand, total and phosphorylated Cbl was reduced during insulin resistance, suggesting that activation of Cbl/CAP is essential for insulin-mediated GLUT4 translocation, in addition to activation of PI3K. Pharmacological inhibition of contraction in insulin-sensitive ARC reduced insulin sensitivity and lowered phosphorylated Cbl. The results suggest that transient insulin resistance in ARC is related to impairment of GLUT4 translocation. A defect in the PI3K-independent insulin signaling pathway involving Cbl seems to contribute to reduced insulin responsiveness and may be related to contractile arrest.