731 resultados para Transformations (Mathematics).


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La représentation d'une surface, son lissage et son utilisation pour l'identification, la comparaison, la classification, et l'étude des variations de volume, de courbure ou de topologie sont omniprésentes dans l'aire de la numérisation. Parmi les méthodes mathématiques, nous avons retenu les transformations difféomorphiques d'un pattern de référence. Il y a un grand intérêt théorique et numérique à approcher un difféomorphisme arbitraire par des difféomorphismes engendrés par des champs de vitesses. Sur le plan théorique la question est : "est-ce que le sous-groupe de difféomorphismes engendrés par des champs de vitesses est dense dans le groupe plus large de Micheletti pour la métrique de Courant ?" Malgré quelques progrès réalisés ici, cette question demeure ouverte. Les pistes empruntées ont alors convergé vers le sous-groupe de Azencott et de Trouvé et sa métrique dans le cadre de l'imagerie. Elle correspond à une notion de géodésique entre deux difféomorphismes dans leur sous-groupe. L'optimisation est utilisée pour obtenir un système d'équations état adjoint caractérisant la solution optimale du problème d'identification à partir des observations. Cette approche est adaptée à l'identification de surfaces obtenues par un numériseur tel que, par exemple, le scan d'un visage. Ce problème est beaucoup plus difficile que celui d'imagerie. On doit alors introduire un système de référence courbe et une surface à facettes pour les calculs. On donne la formulation du problème d'identification et du calcul du changement de volume par rapport à un scan de référence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les rivières reçoivent de l'azote de leurs bassins versants et elles constituent les derniers sites de transformations des nutriments avant leur livraison aux zones côtières. Les transformations de l’azote inorganique dissous en azote gazeux sont très variables et peuvent avoir un impact à la fois sur l’eutrophisation des côtes et les émissions de gaz à effet de serre à l’échelle globale. Avec l’augmentation de la charge en azote d’origine anthropique vers les écosystèmes aquatiques, les modèles d’émissions de gaz à effet de serre prédisent une augmentation des émissions d’oxyde nitreux (N2O) dans les rivières. Les mesures directes de N2O dans le Lac Saint-Pierre (LSP), un élargissement du Fleuve Saint-Laurent (SLR) indiquent que bien qu’étant une source nette de N2O vers l'atmosphère, les flux de N2O dans LSP sont faibles comparés à ceux des autres grandes rivières et fleuves du monde. Les émissions varient saisonnièrement et inter-annuellement à cause des changements hydrologiques. Les ratios d’émissions N2O: N2 sont également influencés par l’hydrologie et de faibles ratios sont observés dans des conditions de débit d'eau plus élevée et de charge en N élevé. Dans une analyse effectuée sur plusieurs grandes rivières, la charge hydraulique des systèmes semble moduler la relation entre les flux de N2O annuels et les concentrations de nitrate dans les rivières. Dans SLR, des tapis de cyanobactéries colonisant les zones à faible concentration de nitrate sont une source nette d’azote grâce à leur capacité de fixer l’azote atmosphérique (N2). Étant donné que la fixation a lieu pendant le jour alors que les concentrations d'oxygène dans la colonne d'eau sont sursaturées, nous supposons que la fixation de l’azote est effectuée dans des micro-zones d’anoxie et/ou possiblement par des diazotrophes hétérotrophes. La fixation de N dans les tapis explique le remplacement de près de 33 % de la perte de N par dénitrification dans tout l'écosystème au cours de la période d'étude. Dans la portion du fleuve Hudson soumis à la marée, la dénitrification et la production de N2 est très variable selon le type de végétation. La dénitrification est associée à la dynamique en oxygène dissous particulière à chaque espèce durant la marée descendante. La production de N2 est extrêmement élevée dans les zones occupées par les plantes envahissantes à feuilles flottantes (Trapa natans) mais elle est négligeable dans la végétation indigène submergée. Une estimation de la production de N2 dans les lits de Trapa durant l’été, suggère que ces lits représentent une zone très active d’élimination de l’azote. En effet, les grands lits de Trapa ne représentent que 2,7% de la superficie totale de la portion de fleuve étudiée, mais ils éliminent entre 70 et 100% de l'azote total retenu dans cette section pendant les mois d'été et contribuent à près de 25% de l’élimination annuelle d’azote.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le théorème ergodique de Birkhoff nous renseigne sur la convergence de suites de fonctions. Nous nous intéressons alors à étudier la convergence en moyenne et presque partout de ces suites, mais dans le cas où la suite est une suite strictement croissante de nombres entiers positifs. C’est alors que nous définirons les suites uniformes et étudierons la convergence presque partout pour ces suites. Nous regarderons également s’il existe certaines suites pour lesquelles la convergence n’a pas lieu. Nous présenterons alors un résultat dû en partie à Alexandra Bellow qui dit que de telles suites existent. Finalement, nous démontrerons une équivalence entre la notion de transformatiuon fortement mélangeante et la convergence d'une certaine suite qui utilise des “poids” qui satisfont certaines propriétés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les films de simulations qui accompagnent le document ont été réalisés avec Pymol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quelles sont les voies par lesquelles les changements sociaux affectent les identités collectives et de quelle manière une nouvelle identité vient à être adoptée par une population. Les grandes transformations qui eurent lieu en Mongolie du 19e siècle à la moitié du 20e siècle seront abordées pour tenter de répondre à ces questions. Dans un court laps de temps, cette région passa par trois systèmes politiques différents; d'une partie semi-autonome du territoire de l'empire Qing à une théocratie bouddhiste puis à une République populaire. Dans chacun des cas, les contextes sociaux ayant provoqué des changements dans la définition identitaire seront abordés ainsi que la forme par laquelle les nouveaux concepts d'identité collective allaient être sélectionnés, modifiés ou construits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les copulas archimédiennes hiérarchiques ont récemment gagné en intérêt puisqu’elles généralisent la famille de copules archimédiennes, car elles introduisent une asymétrie partielle. Des algorithmes d’échantillonnages et des méthodes ont largement été développés pour de telles copules. Néanmoins, concernant l’estimation par maximum de vraisemblance et les tests d’adéquations, il est important d’avoir à disposition la densité de ces variables aléatoires. Ce travail remplie ce manque. Après une courte introduction aux copules et aux copules archimédiennes hiérarchiques, une équation générale sur les dérivées des noeuds et générateurs internes apparaissant dans la densité des copules archimédiennes hiérarchique. sera dérivée. Il en suit une formule tractable pour la densité des copules archimédiennes hiérarchiques. Des exemples incluant les familles archimédiennes usuelles ainsi que leur transformations sont présentés. De plus, une méthode numérique efficiente pour évaluer le logarithme des densités est présentée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.