897 resultados para Tool development
Resumo:
The objectives of this study were to develop and validate a tool for assessing pain in population-based observational studies and to develop three subscales for back/neck, upper extremity and lower extremity pain. Based on a literature review, items were extracted from validated questionnaires and reviewed by an expert panel. The initial questionnaire consisted of a pain manikin and 34 items relating to (i) intensity of pain in different body regions (7 items), (ii) pain during activities of daily living (18 items) and (iii) various pain modalities (9 items). Psychometric validation of the initial questionnaire was performed in a random sample of the German-speaking Swiss population. Analyses included tests for reliability, correlation analysis, principal components factor analysis, tests for internal consistency and validity. Overall, 16,634 of 23,763 eligible individuals participated (70%). Test-retest reliability coefficients ranged from 0.32 to 0.97, but only three coefficients were below 0.60. Subscales were constructed combining four items for each of the subscales. Item-total coefficients ranged from 0.76 to 0.86 and Cronbach's alpha were 0.75 or higher for all subscales. Correlation coefficients between subscales and three validated instruments (WOMAC, SPADI and Oswestry) ranged from 0.62 to 0.79. The final Pain Standard Evaluation Questionnaire (SEQ Pain) included 28 items and the pain manikin and accounted for the multidimensionality of pain by assessing pain location and intensity, pain during activity, triggers and time of onset of pain and frequency of pain medication. It was found to be reliable and valid for the assessment of pain in population-based observational studies.
Resumo:
Diagnosis of udder infections with Staphylococcus aureus by bacteriological milk testing of quarter milk samples is often not satisfactory. To get reliable results, repeated sampling is necessary, which is normally too expensive. Therefore, we developed a test that allows the highly specific detection of Staph. aureus in bovine milk samples at very low concentrations. It is based on a fast procedure to prepare bacteria from milk, followed by DNA extraction and quantitative PCR. The whole analysis is done within 5 h. For clinical milk samples, the analytical sensitivity of the assay was 50.7 times and 507 times higher than conventional bacteriology with 100 and 10 microL, respectively. The diagnostic specificity was 100%. The test is further characterized by a low intra- and interassay variability as well as by a good recovery of Staph. aureus from raw milk. Furthermore, a high correlation (R = 0.925) between the agar plate counts and the quantitative PCR methodology over the whole range of measurement was found. In addition, our test revealed considerably more positive results than bacteriology. Due to its favorable properties, the assay might become an important diagnostic tool in the context of bovine mastitis caused by Staph. aureus.
Resumo:
Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.
Resumo:
BACKGROUND: Children in emergencies need peripheral intravenous (IV) access in order to receive drugs or fluids. The success of IV access is associated with the age of patients and fails in up to 50% of children younger than 6 years. In such situations, it is essential that physicians and paramedics have a tool and easily learnable skills with a high chance of success. According to international guidelines intraosseous (IO) access would be the next step after failed IV access. Our hypothesis was that the success rate in IO puncturing can be improved by standardizing the training; so we developed an IO workshop. METHODS: Twenty-eight hospitals and ambulance services participated in an evaluation process over 3 years. IO workshops and the distribution of standardized IO sets were coordinated by the study group of the University Hospital of Berne. Any attempted or successful IO punctures were evaluated with a standardized interview. RESULTS: We investigated 35 applications in 30 patients (a total of 49 punctures) between November 2001 and December 2004. IO puncture was not successful in 5 patients. The success rate depended neither on the occupation nor the experience of users. Attendance at a standardized IO workshop increased the overall success rate from 77% to 100%, which was statistically not significant (P = 0.074). CONCLUSIONS: Standardized training in IO puncturing seems to improve success more than previous experience and occupation of providers. However, we could not show a significant increase in success rate after this training. Larger supranational studies are needed to show a significant impact of teaching on rarely used emergency skills.
Resumo:
This dissertation presents an effective quasi one-dimensional (1-D) computational simulation tool and a full two-dimensional (2-D) computational simulation methodology for steady annular/stratified internal condensing flows of pure vapor. These simulation tools are used to investigate internal condensing flows in both gravity as well as shear driven environments. Through accurate numerical simulations of the full two dimensional governing equations, results for laminar/laminar condensing flows inside mm-scale ducts are presented. The methodology has been developed using MATLAB/COMSOL platform and is currently capable of simulating film-wise condensation for steady (and unsteady flows). Moreover, a novel 1-D solution technique, capable of simulating condensing flows inside rectangular and circular ducts with different thermal boundary conditions is also presented. The results obtained from the 2-D scientific tool and 1-D engineering tool, are validated and synthesized with experimental results for gravity dominated flows inside vertical tube and inclined channel; and, also, for shear/pressure driven flows inside horizontal channels. Furthermore, these simulation tools are employed to demonstrate key differences of physics between gravity dominated and shear/pressure driven flows. A transition map that distinguishes shear driven, gravity driven, and “mixed” driven flow zones within the non-dimensional parameter space that govern these duct flows is presented along with the film thickness and heat transfer correlations that are valid in these zones. It has also been shown that internal condensing flows in a micro-meter scale duct experiences shear driven flow, even in different gravitational environments. The full 2-D steady computational tool has been employed to investigate the length of annularity. The result for a shear driven flow in a horizontal channel shows that in absence of any noise or pressure fluctuation at the inlet, the onset of non-annularity is partly due to insufficient shear at the liquid-vapor interface. This result is being further corroborated/investigated by R. R. Naik with the help of the unsteady simulation tool. The condensing flow results and flow physics understanding developed through these simulation tools will be instrumental in reliable design of modern micro-scale and spacebased thermal systems.
Resumo:
There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.
Resumo:
This thesis presents a methodology for measuring thermal properties in situ, with a special focus on obtaining properties of layered stack-ups commonly used in armored vehicle components. The technique involves attaching a thermal source to the surface of a component, measuring the heat flux transferred between the source and the component, and measuring the surface temperature response. The material properties of the component can subsequently be determined from measurement of the transient heat flux and temperature response at the surface alone. Experiments involving multilayered specimens show that the surface temperature response to a sinusoidal heat flux forcing function is also sinusoidal. A frequency domain analysis shows that sinusoidal thermal excitation produces a gain and phase shift behavior typical of linear systems. Additionally, this analysis shows that the material properties of sub-surface layers affect the frequency response function at the surface of a particular stack-up. The methodology involves coupling a thermal simulation tool with an optimization algorithm to determine the material properties from temperature and heat flux measurement data. Use of a sinusoidal forcing function not only provides a mechanism to perform the frequency domain analysis described above, but sinusoids also have the practical benefit of reducing the need for instrumentation of the backside of the component. Heat losses can be minimized by alternately injecting and extracting heat on the front surface, as long as sufficiently high frequencies are used.
Resumo:
This dissertation serves as a call to geoscientists to share responsibility with K-12 educators for increasing Earth science literacy. When partnerships are created among K-12 educators and geoscientists, the synergy created can promote Earth science literacy in students, teachers, and the broader community. The research described here resulted in development of tools that can support effective professional development for teachers. One tool is used during the planning stages to structure a professional development program, another set of tools supports measurement of the effectiveness of a development program, and the third tool supports sustainability of professional development programs. The Michigan Teacher Excellence Program (MiTEP), a Math/Science Partnership project funded by the National Science Foundation, served as the test bed for developing and testing these tools. The first tool, the planning tool, is the Earth Science Literacy Principles (ESLP). The ESLP served as a planning tool for the two-week summer field courses as part of the MiTEP program. The ESLP, published in 2009, clearly describe what an Earth science literate person should know. The ESLP consists of nine big ideas and their supporting fundamental concepts. Using the ESLP for planning a professional development program assisted both instructors and teacher-participants focus on important concepts throughout the professional development activity. The measurement tools were developed to measure change in teachers’ Earth science content-area knowledge and perceptions related to teaching and learning that result from participating in a professional development program. The first measurement tool, the Earth System Concept Inventory (ESCI), directly measures content-area knowledge through a succession of multiple-choice questions that are aligned with the content of the professional development experience. The second measurement, an exit survey, collects qualitative data from teachers regarding their impression of the professional development. Both the ESCI and the exit survey were tested for validity and reliability. Lesson study is discussed here as a strategy for sustaining professional development in a school or a district after the end of a professional development activity. Lesson study, as described here, was offered as a formal course. Teachers engaged in lesson study worked collaboratively to design and test lessons that improve the teachers’ classroom practices. Data regarding the impact of the lesson study activity were acquired through surveys, written documents, and group interviews. The data are interpreted to indicate that the lesson study process improved teacher quality and classroom practices. In the case described here, the lesson study process was adopted by the teachers’ district and currently serves as part of the district’s work in Professional Learning Communities, resulting in ongoing professional development throughout the district.
Resumo:
Description of simulation and training games as tool for awareness and capacity development in multi steakeholder processes
Resumo:
Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.
Resumo:
The use of virtual learning environments in Higher Education (HE) has been growing in Portugal, driven by the Bologna Process. An example is the use of Learning Management Systems (LMS) that translates an opportunity to leverage the use of technological advances in the educational process. The progress of information and communication technologies (ICT) coupled with the great development of Internet has brought significant challenges to educators that require a thorough knowledge of their implementation process. These field notes present the results of a survey among teachers of a private HE institution in its use of Moodle as a tool to support face-to-face teaching. A research methodology essentially of exploratory nature based on a questionnaire survey, supported by statistical treatment allowed to detect motivations, type of use and perceptions of teachers in relation to this kind of tool. The results showed that most teachers, by a narrow margin (58%), had not changed their pedagogical practice as a consequence of using Moodle. Among those that did 67% attended institutional internal training. Some of the results obtained suggest further investigation and provide guidelines to plan future internal training.
Resumo:
The competitive industrial context compels companies to speed-up every new product design. In order to keep designing products that meet the needs of the end user, a human centered concurrent product design methodology has been proposed. Its setting up is complicated by the difficulties of collaboration between experts involved inthe design process. In order to ease this collaboration, we propose the use of virtual reality as an intermediate design representation in the form of light and specialized immersive convergence support applications. In this paper, we present the As Soon As Possible (ASAP) methodology making possible the development of these tools while ensuring their usefulness and usability. The relevance oft his approach is validated by an industrial use case through the design of an ergonomic-style convergence support tool.
Resumo:
In order to improve the diagnosis of enzootic pneumonia (EP) in pigs two real-time polymerase chain reaction (rtPCR) assays for the detection of Mycoplasma hyopneumoniae in bronchial swabs from lung necropsies were established and validated in parallel. As a gold standard, the current "mosaic diagnosis" was taken, including epidemiological tracing, clinical signs, macro- and histopathological lesions of the lungs and immunofluorescence. One rtPCR is targeting a repeated DNA element of the M. hyopneumoniae genome (REP assay), the other a putative ABC transporter gene (ABC assay). Both assays were shown to be specific for M. hyopneumoniae and did not cross react with other bacteria and mollicutes from pig. With material from pigs of defined EP-negative farms the two assays showed to be 100% specific. When testing lungs from pig farms with EP, the REP assay detected 50% and the ABC assay 90% of the farms as positive. Both tests together detected all positive farms. Within a positive herd the two assays tested similarly with on average over 90% of the lung samples analysed from a single farm showing positive scores. A series of samples with suspicion of EP and samples from pigs with diseases other than respiratory taken from current routine diagnostic was assayed. None of the assays showed false positive results. The sensitivities in this sample group were 50% for the REP and 70% for the ABC assays and for both assays together 85%. The two assays run in parallel are therefore a valuable tool for the improvement of the current diagnosis of EP.
Resumo:
During the last decades, the narcissistic personality inventory (npi) was the most widely used questionnaire to measure narcissism as a personality trait. But the npi assesses grandiose narcissism only, while recent discussions emphasize the existence of vulnerable narcissism. The pathological narcissism inventory (pni, pincus et al., 2009) is a new questionnaire assessing these different aspects of narcissism. However, with 54 items on seven subscales, the pni is quite long to serve as a screening tool for narcissistic traits. We therefore developed a short form to facilitate its application in research and practice. Even though the pni covers different symptoms of narcissism, they are all expressions of the same underlying construct. We therefore used the rasch model to guide the item selection. Method and results: a sample of 1837 participants (67.5% female, mean age 26.8 years) was used to choose the items for the short form. Two criteria were adopted: all aspects, represented by the seven subscales in the original, should be retained, and items should be rasch homogenous. In a step-by-step procedure we excluded items successively until reaching a homogenous pool of 22 items. All remaining items had satisfactory fit indices and fitstatistics for the model were good. characteristics of the resulting short form were tested using a new independent validation sample (n=104, mean age = 32.8, 45% female). Correlations of the short pni with different validation measures were comparable to the correlations obtained with the original form, indicating that the two forms were equivalent. Conclusion: the resulting one-dimensional measure can be used as a screening questionnaire for pathological narcissism. The rasch homogeneity facilitates the comparison of narcissism scores among a variety of samples.
Resumo:
Recent investigations of the tumor microenvironment have shown that many tumors are infiltrated by inflammatory and lymphocytic cells. Increasing evidence suggests that the number, type and location of these tumor-infiltrating lymphocytes in primary tumors has prognostic value, and this has led to the development of an 'immunoscore. As well as providing useful prognostic information, the immunoscore concept also has the potential to help predict response to treatment, thereby improving decision- making with regard to choice of therapy. This predictive aspect of the tumor microenvironment forms the basis for the concept of immunoprofiling, which can be described as 'using an individual's immune system signature (or profile) to predict that patient's response to therapy' The immunoprofile of an individual can be genetically determined or tumor-induced (and therefore dynamic). Ipilimumab is the first in a series of immunomodulating antibodies and has been shown to be associated with improved overall survival in patients with advanced melanoma. Other immunotherapies in development include anti-programmed death 1 protein (nivolumab), anti-PD-ligand 1, anti-CD137 (urelumab), and anti-OX40. Biomarkers that can be used as predictive factors for these treatments have not yet been clinically validated. However, there is already evidence that the tumor microenvironment can have a predictive role, with clinical activity of ipilimumab related to high baseline expression of the immune-related genes FoxP3 and indoleamine 2,3-dioxygenase and an increase in tumor-infiltrating lymphocytes. These biomarkers could represent the first potential proposal for an immunoprofiling panel in patients for whom anti-CTLA-4 therapy is being considered, although prospective data are required. In conclusion, the evaluation of systemic and local immunological biomarkers could offer useful prognostic information and facilitate clinical decision making. The challenge will be to identify the individual immunoprofile of each patient and the consequent choice of optimal therapy or combination of therapies to be used.