927 resultados para Tobit Regression
Resumo:
This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.
Resumo:
This study investigates the degree to which gender, ethnicity, relationship to perpetrator, and geomapped socio-economic factors significantly predict the incidence of childhood sexual abuse, physical abuse and non- abuse. These variables are then linked to geographic identifiers using geographic information system (GIS) technology to develop a geo-mapping framework for child sexual and physical abuse prevention.
Resumo:
BACKGROUND: Obesity is a systemic disorder associated with an increase in left ventricular mass and premature death and disability from cardiovascular disease. Although bariatric surgery reverses many of the hormonal and hemodynamic derangements, the long-term collective effects on body composition and left ventricular mass have not been considered before. We hypothesized that the decrease in fat mass and lean mass after weight loss surgery is associated with a decrease in left ventricular mass. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7+/-1.7 kg/m(2)) with medically controlled hypertension underwent bariatric surgery. Left ventricular mass and plasma markers of systemic metabolism, together with body mass index (BMI), waist and hip circumferences, body composition (fat mass and lean mass), and resting energy expenditure were measured at 0, 3, 9, 12, and 24 months. RESULTS: Left ventricular mass continued to decrease linearly over the entire period of observation, while rates of weight loss, loss of lean mass, loss of fat mass, and resting energy expenditure all plateaued at 9 [corrected] months (P <.001 for all). Parameters of systemic metabolism normalized by 9 months, and showed no further change at 24 months after surgery. CONCLUSIONS: Even though parameters of obesity, including BMI and body composition, plateau, the benefits of bariatric surgery on systemic metabolism and left ventricular mass are sustained. We propose that the progressive decrease of left ventricular mass after weight loss surgery is regulated by neurohumoral factors, and may contribute to improved long-term survival.
Resumo:
Graphical presentation of regression results has become increasingly popular in the scientific literature, as graphs are much easier to read than tables in many cases. In Stata such plots can be produced by the -marginsplot- command. However, while -marginsplot- is very versatile and flexible, it has two major limitations: it can only process results left behind by -margins- and it can only handle one set of results at the time. In this article I introduce a new command called -coefplot- that overcomes these limitations. It plots results from any estimation command and combines results from several models into a single graph. The default behavior of -coefplot- is to plot markers for coefficients and horizontal spikes for confidence intervals. However, -coefplot- can also produce various other types of graphs. The capabilities of -coefplot- are illustrated in this article using a series of examples.
Resumo:
coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.
Resumo:
OBJECTIVE To investigate the effect of gonadotropin-releasing hormone analogues (GnRHa) on the peritoneal fluid microenvironment in women with endometriosis. STUDY DESIGN Peritoneal fluid was collected from 85 women with severe endometriosis (rAFS stage III and IV) during laparoscopic surgery during the proliferative phase. Prior to surgery clinical data were collected. The concentrations of specific markers for endometriosis in the peritoneal fluid were determined using an ELISA and a comparison between peritoneal fluid markers in women using GnRHa and no hormonal treatment was performed using a non-parametric Mann-Whitney U test. RESULTS The study included peritoneal fluid from 39 patients who had been administered GnRHa (Zoladex(®)) in the three months prior to surgery and 46 from women with no hormonal treatment in this period. Concentrations of IL-8, PAPP-A, glycodelin-A and midkine were significantly reduced in the GnRHa treatment group compared to women receiving no hormonal treatment. RANTES, MCP-1, ENA-78, TNF-α, OPG, IP-10 and defensin showed no significant change between the two groups. CONCLUSIONS GnRHa mediate a significant regression in the inflammatory nature of the peritoneal microenvironment in women with endometriosis.
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
Histopathologic determination of tumor regression provides important prognostic information for locally advanced gastroesophageal carcinomas after neoadjuvant treatment. Regression grading systems mostly refer to the amount of therapy-induced fibrosis in relation to residual tumor or the estimated percentage of residual tumor in relation to the former tumor site. Although these methods are generally accepted, currently there is no common standard for reporting tumor regression in gastroesophageal cancers. We compared the application of these 2 major principles for assessment of tumor regression: hematoxylin and eosin-stained slides from 89 resection specimens of esophageal adenocarcinomas following neoadjuvant chemotherapy were independently reviewed by 3 pathologists from different institutions. Tumor regression was determined by the 5-tiered Mandard system (fibrosis/tumor relation) and the 4-tiered Becker system (residual tumor in %). Interobserver agreement for the Becker system showed better weighted κ values compared with the Mandard system (0.78 vs. 0.62). Evaluation of the whole embedded tumor site showed improved results (Becker: 0.83; Mandard: 0.73) as compared with only 1 representative slide (Becker: 0.68; Mandard: 0.71). Modification into simplified 3-tiered systems showed comparable interobserver agreement but better prognostic stratification for both systems (log rank Becker: P=0.015; Mandard P=0.03), with independent prognostic impact for overall survival (modified Becker: P=0.011, hazard ratio=3.07; modified Mandard: P=0.023, hazard ratio=2.72). In conclusion, both systems provide substantial to excellent interobserver agreement for estimation of tumor regression after neoadjuvant chemotherapy in esophageal adenocarcinomas. A simple 3-tiered system with the estimation of residual tumor in % (complete regression/1% to 50% residual tumor/>50% residual tumor) maintains the highest reproducibility and prognostic value.