962 resultados para Tida Neuron
Resumo:
Galanin receptor (GalR) subtypes 1-3 linked to central galanin neurons may form heteromers with each other and other types of G protein-coupled receptors in the central nervous system (CNS). These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15) to modulate the function of different types of glia-neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR-5-HT1A heteromers likely exist with antagonistic GalR-5-HT1A receptor-receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1-5-HT1A heteromers in cellular models with trans-inhibition of the protomer signaling. A GalR1-GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15) in the CNS. Furthermore, a GalR1-GalR2-5-HT1A heterotrimer is postulated to explain why only galanin (1-15) but not galanin (1-29) can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR-5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR-NPYY1 receptor interactions in putative GalR-NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1-GalR2 heteromer) appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1-GalR2-NPYY2 heterotrimer. Finally, putative GalR-α2-adrenoreceptor heteromers with antagonistic receptor-receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression
Resumo:
BACKGROUND: Lack of electroencephalography (EEG) background reactivity during therapeutic hypothermia (TH) has been associated with poor outcome in post-anoxic comatose patients. However, decision on intensive care withdrawal is based on normothermic (NT) evaluations. This study aims at exploring whether patients showing recovery of EEG reactivity in NT after a non-reactive EEG in TH differ from those remaining non-reactive. METHODS: Patients with non-reactive EEG during TH were identified from our prospective registry of consecutive comatose adults admitted after successful resuscitation from CA between April 2009 and June 2014. Variables including neurological examination, serum neuron-specific enolase (NSE), procalcitonin, and EEG features were compared regarding impact on functional outcome at 3 months. RESULTS: Seventy-two of 197 patients (37 %) had a non-reactive EEG background during TH with thirteen (18 %) evolving towards reactivity in NT. Compared to those remaining non-reactive (n = 59), they showed significantly better recovery of brainstem reflexes (p < 0.001), better motor responses (p < 0.001), transitory consciousness improvement (p = 0.008), and a tendency toward lower NSE (p = 0.067). One patient recovering EEG reactivity survived with good functional outcome at 3 months. CONCLUSIONS: Recovery of EEG reactivity from TH to NT seems to distinguish two patients' subgroups regarding early neurological assessment and transitory consciousness improvement, corroborating the role of EEG in providing information about cerebral functions. Understanding these dynamic changes encourages maintenance of intensive support in selected patients even after a non-reactive EEG background in TH, as a small subgroup may indeed recover with good functional outcome.
Resumo:
Increasingly detailed data on the network topology of neural circuits create a need for theoretical principles that explain how these networks shape neural communication. Here we use a model of cascade spreading to reveal architectural features of human brain networks that facilitate spreading. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we investigate scenarios where perturbations initiated at seed nodes result in global cascades that interact either cooperatively or competitively. We find that hub regions and a backbone of pathways facilitate early spreading, while the shortest path structure of the connectome enables cooperative effects, accelerating the spread of cascades. Finally, competing cascades become integrated by converging on polysensory associative areas. These findings show that the organizational principles of brain networks shape global communication and facilitate integrative function.
Resumo:
Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte-neuron lactate shuttle (ANLS) and the glutamate-glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others, MS NAGM astrocytes express inflammasome components and that astrocytes are capable to release Il-1β in-vitro. Altogether, our data suggests that immune signaling of immune- and/or central nervous system origin drives alterations in astrocytic ANLS and GGC gene regulation in the MS NAGM. Such a mechanism might underlie cortical brain dysfunctions frequently encountered in MS patients.
Resumo:
The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.
Resumo:
In this article we presents a project [1] developed to demonstrate the capability that Multi-Layer Perceptrons (MLP) have to approximate non-linear functions [2]. The simulation has been implemented in Java to be used in all the computers by Internet [3], with a simple operation and pleasant interface. The power of the simulations is in the possibility of the user of seeing the evolutions of the approaches, the contribution of each neuron, the control of the different parameters, etc. In addition, to guide the user during the simulation, an online help has been implemented.
Resumo:
Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.
Resumo:
During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer's, and Parkinson's diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types.
Resumo:
The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.
Resumo:
Neonatal hypoxic-ischemic encephalopathy is a critical cerebral event occurring around birth with high mortality and neurological morbidity associated with long-term invalidating sequelae. In view of the great clinical importance of this condition and the lack of very efficacious neuroprotective strategies, it is urgent to better understand the different cell death mechanisms involved with the ultimate aim of developing new therapeutic approaches. The morphological features of three different cell death types can be observed in models of perinatal cerebral hypoxia-ischemia: necrotic, apoptotic and autophagic cell death. They may be combined in the same dying neuron. In the present review, we discuss the different cell death mechanisms involved in neonatal cerebral hypoxia-ischemia with a special focus on how autophagy may be involved in neuronal death, based: (1) on experimental models of perinatal hypoxia-ischemia and stroke, and (2) on the brains of human neonates who suffered from neonatal hypoxia-ischemia.
Resumo:
Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs.
Resumo:
The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.
Resumo:
Positive and negative reinforcing systems are part of the mechanism of drug dependence. Drugs with abuse potential may change the manner of response to negative emotional stimuli, activate positive emotional reactions and possess primary reinforcing properties. Catecholaminergic and peptidergic processes are of importance in these mechanisms. Current research needs to understand the types of adaptations that underlie the particularly long-lived aspects of addiction. Presently, glutamate is candidate to play a role in the enduring effects of drugs of abuse. For example, it participates in the chronic pathological changes of corticostriatal terminals produced by methamphetamine. At the synaptic level, a link between over-activation of glutamate receptors, [C(a2+)](i) increase and neuronal damage has been clearly established leading to neurodegeneration. Thus, neurodegeneration can start after an acute over-stimulation whose immediate effects depend on a diversity of calcium-activated mechanisms. If sufficient, the initial insult results in calcification and activation of a chronic on-going process with a progressive loss of neurons. At present, long-term effects of drug dependence underlie an excitotoxicity process linked to a polysynaptic pathway that dynamically regulates synaptic glutamate. Retaliatory mechanisms include energy capability of the neurons, inhibitory systems and cytoplasmic calcium precipitation as part of the neuron-glia interactions. This paper presents an integrated view of these molecular and cellular mechanisms to help understand their relationship and interdependence in a chronic pathological process that suggest new targets for therapeutic intervention.
Resumo:
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. VIDEO ABSTRACT.
Resumo:
Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a "cerebral glucose-sparing effect," and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.