879 resultados para Therapeutic recreation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Therapeutic vaccination for chronic hepatitis B in the Trimera mouse modelrnRaja Vuyyuru and Wulf O. BöcherrnHepatitis B is a liver disease caused by Hepatitis B virus (HBV). It ranges in severity from a mild illness, lasting a few weeks (acute), to a serious long-term (chronic) illness that can lead either to liver disease or liver cancer. Acute infection is self limiting in most adults, resulting in clearance of virus from blood and liver and the development of lasting immunity. However 5% of acutely infected patients do not resolve primary HBV infection, leading to chronic infection with persistent viral replication in the liver. The strength of the initial antiviral immune response elicited to Hepatitis B determines the subsequent clinical outcome. A strong and broad T cell response leads to spontaneous resolution. Conversely, a weak T cell response favours viral persistence and establishment of chronic disease. While treatments using interferon-alpha or nucleos(t)ide analogues can reduce disease progression, they rarely lead to complete recovery. The lack of a suitable small animal model hampered efforts to understand the mechanisms responsible for immune failure in these chronic patients.rnIn current study we used Trimera mice to study the efficacy of potential vaccine candidates using HBV loaded dendritic cells in HBV chronic infection in vivo. The Trimera mouse model is based on Balb/c mice implanted with SCID mouse bone marrow and human peripheral blood mononuclear cells (PBMC) from HBV patients, and thus contains the immune system of the donor including their HBV associated T cell defect.rnIn our present study, strong HBV specific CD4+ and CD8+ T cell responses were enhanced by therapeutic vaccination in chronic HBV patients. These T cell responses occurred independently of either the course of the disease or the strength of their underlying HBV specific T cell failure. These findings indicate that the Trimera mouse model represents a novel experimental tool for evaluating potential anti-HBV immunotherapeutic agents. This in vivo data indicated that both the HBV specific CD4+ cell and CD8+ responses were elicited in the periphery. These HBV specific T cells proliferated and secreted cytokines upon restimulation in Trimera mice. The observation that these HBV specific T cells are not detectable directly ex vivo indicates that they must be immune tolerant or present at a very low frequency in situ. HBV specific T cell responses were suppressed in Trimera mice under viremic conditions, suggesting that viral factors might be directly involved in tolerizing or silencing antiviral T cell responses. Thus, combination of an effective vaccine with antiviral treatment to reduce viremia might be a more effective therapeutic strategy for the future. Such approaches should be tested in Trimera mice generated in HBV or HBs expressing transgenic mice before conducting clinical trials.rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the research project discussed in this thesis was to study the inhibition of aerobic glycolysis, that is the metabolic pathway exploited by cancer cells for the ATP generation. This observation has led to the evaluation of glycolytic inhibitors as potential anticancer agents. Lactate dehydrogenase (LDH) is the only enzyme whose inhibition should allow a blocking of aerobic glycolysis of tumor cells without damaging the normal cells which, in conditions of normal functional activity and sufficient oxygen supply, do not need this enzyme. In preliminar experiments we demonstrated that oxamic acid and tartronic acid, two LDH competitive inhibitors, impaired aerobic glycolysis and replication of cells from human hepatocellular carcinoma. Therefore, we proposed that the depletion of ATP levels in neoplastic cells, could improved the chemotherapeutic index of associated anticancer drugs; in particular, it was studied the association of oxamic acid and multi-targeted kinase inhibitors. A synergistic effect in combination with sorafenib was observed, and we demonstrated that this was related to the capacity of sorafenib to hinder the oxidative phosphorylation, so that cells were more dependent to aerobic glycolysis. These results linked to LDH blockage encouraged us to search for LDH inhibitors more powerful than oxamic acid; thus, in collaboration with the Department of Pharmaceutical Sciences of Bologna University we identified a new molecule, galloflavin, able to inhibit both A and B isoforms of LDH enzyme. The effects of galloflavin were studied on different human cancer cell lines (hepatocellular carcinoma, breast cancer, Burkitt’s lymphoma). Although exhibiting different power on the tested cell lines, galloflavin was constantly found to inhibit lactate and ATP production and to induce cell death, mainly in the form of apoptosis. Finally, as LDH-A is able to bind single stranded DNA, thus stimulating cell transcription, galloflavin effects were also studied on this other LDH function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (γH2AX), marker of DNA damage and genomic instability. Constitutive γH2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL. The second part of this work is the clinical, molecular and functional description of a paradigmatic case of primary refractory Burkitt lymphoma characterized by spatial intratumor heterogeneity for the TP53 mutational status, high expression levels of genomic instability and DDR activation markers, primary resistance to chemotherapy and exquisite sensitivity to DDR inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class I phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases consisting of a regulatory subunit and one of four catalytic subunits (p110α, p110β, p110γ or p110δ). p110γ/p110δ PI3Ks are highly enriched in leukocytes. In general, PI3Ks regulate a variety of cellular processes including cell proliferation, survival and metabolism, by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Their activity is tightly regulated by the phosphatase and tensin homolog (PTEN) lipid phosphatase. PI3Ks are widely implicated in human cancers, and in particular are upregulated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to loss of PTEN function. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. At present different compounds which target single or multiple PI3K isoforms have entered clinical trials. In the present research, it has been analyzed the therapeutic potential of the pan-PI3K inhibitor BKM120, an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T-lymphoblasts. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. BKM120 efficacy was confirmed in in vivo studies to a subcutaneous xenotransplant model of human T-ALL. Because it is still unclear which agents among isoform-specific or pan inhibitors can achieve the greater efficacy, further analyses have been conducted to investigate the effects of PI3K inhibition, in order to elucidate the mechanisms responsible for the proliferative impairment of T-ALL. Overall, these results indicated that BKM120 may be an efficient treatment for T-ALLs that have aberrant up-regulation of the PI3K signaling pathway and strongly support clinical application of pan-class I PI3K rather than single-isoform inhibitors in T-ALL treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis work deals, principally, with the development of different chemical protocols ranging from environmental sustainability peptide synthesis to asymmetric synthesis of modified tryptophans to a series of straightforward procedures for constraining peptide backbones without the need for a pre-formed scaffold. Much efforts have been dedicated to the structural analysis in a biomimetic environment, fundamental for predicting the in vivo conformation of compounds, as well as for giving a rationale to the experimentally determined bioactivity. The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, titration experiments, molecular dynamics, etc.), FT-IR and ECD spectroscopy. As a practical application, 3D rigid scaffolds have been employed for the synthesis of biological active compounds based on peptidomimetic and retro-mimetic structures. These mimics have been investigated for their potential as antiflammatory agents and actually the results obtained are very promising. Moreover, the synthesis of Amo ring permitted the development of an alternative high effective synthetic pathway for obtaining Linezolid antibiotic. The final section is, instead, dedicated to the construction of a new biosensor based on zeolite L SAMs functionalized with the integrin ligand c[RGDfK], that has showed high efficiency for the selective detection of tumor cells. Such kind of sensor could, in fact, enable the convenient, non-invasive detection and diagnosis of cancer in early stages, from a few drops of a patient's blood or other biological fluids. In conclusion, the researches described herein demonstrate that the peptidomimetic approach to 3D definite structures, allows unambiguous investigation of the structure-activity relationships, giving an access to a wide range bioactive compounds of pharmaceutical interest to use not only as potential drugs but also for diagnostic and theranostic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endogenous and introduced TCR α and TCR β-chains, which might lead to off-target autoimmune reactions, similar to Graft-versus-host disease (GvHD). rnIn this study we evaluated the safety issues, which rise by the risk of p53TCR gene transfer-associated on/off-target toxicities as well as the anti-tumor response in vivo in a syngeneic HLA-A*0201 transgenic mouse model. We could successfully demonstrate that opt sc p53-specific TCR-redirected T cells prevent TCR mispairing-mediated lethal off-target autoimmunity in contrast to the parental opt αβ-chain p53-specific TCR. Since the sc p53-specific TCR proofed to be safe, all further studies were performed using sc p53-specific TCR redirected T cells only. Infusion of p53-specific TCR-redirected T cells in Human p53 knock-in (Hupki) mice after lymphodepletion-preconditioning regimen with either sublethal body irradiation (5Gy) or chemotherapy (fludarabine and cyclophosphamide) in combination with vaccination (anti-CD40, CpG1668 and p53(257-282) peptide) did not result in a depletion of hematopoietic cells. Moreover, adoptive transfer of high numbers of p53-specific TCR-redirected T cells in combination with Interleukin 2 (IL-2) also did not lead to toxic on-target reactions. The absence of host tissue damage was confirmed by histology and flow cytometry analysis. Furthermore, p53-specific TCR-redirected T cells were able to lyse p53+A2.1+ tumor cells in vitro. However, in vivo studies revealed the potent suppressive effect of the tumor microenvironment (TME) mediated by tumor-infiltrating myeloid-derived suppressor cells (MDSC). Accordingly, we could improve an insufficient anti-tumor response in vivo after injection of the sc p53-specific TCR-redirected T cells by additional depletion of immunosuppressive cells of the myeloid lineage.rnTogether, these data suggest that the optimized sc p53(264-272)-specific TCR may represent a safe and efficient approach for TCR-based gene therapy. However, combinations of immunotherapeutic strategies are needed to enhance the efficacy of adoptive cell therapy (ACT)-mediated anti-tumor responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background External validity of study results is an important issue from a clinical point of view. From a methodological point of view, however, the concept of external validity is more complex than it seems to be at first glance. Methods Methodological review to address the concept of external validity. Results External validity refers to the question whether results are generalizable to persons other than the population in the original study. The only formal way to establish the external validity would be to repeat the study for that specific target population. We propose a three-way approach for assessing the external validity for specified target populations. (i) The study population might not be representative for the eligibility criteria that were intended. It should be addressed whether the study population differs from the intended source population with respect to characteristics that influence outcome. (ii) The target population will, by definition, differ from the study population with respect to geographical, temporal and ethnical conditions. Pondering external validity means asking the question whether these differences may influence study results. (iii) It should be assessed whether the study's conclusions can be generalized to target populations that do not meet all the eligibility criteria. Conclusion Judging the external validity of study results cannot be done by applying given eligibility criteria to a single target population. Rather, it is a complex reflection in which prior knowledge, statistical considerations, biological plausibility and eligibility criteria all have place.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Through overexpression and aberrant activation in many human tumors, the IGF system plays a key role in tumor development and tumor cell proliferation. Different strategies targeting IGF-I receptor (IGFI-R) have been developed, and recent studies demonstrated that combined treatments with cytostatic drugs enhance the potency of anti-IGFI-R therapies. Objective: The objective of the study was to examine the IGFI-R expression status in neuroendocrine tumors of the gastroenteropancreatic system (GEP-NETs) in comparison with healthy tissues and use potential overexpression as a target for novel anti-IGFI-R immunoliposomes. Experimental Design: A human tumor tissue array and samples from different normal tissues were investigated by immunohistochemistry. An IGFI-R antagonistic antibody (1H7) was coupled to the surface of sterically stabilized liposomes loaded with doxorubicin. Cell lines from different tumor entities were investigated for liposomal association studies in vitro. For in vivo experiments, neuroendocrine tumor xenografts were used for evaluation of pharmacokinetic and therapeutic properties of the novel compound. Results: Immunohistochemistry revealed significant IGFI-R overexpression in all investigated GEP-NETs (n = 59; staining index, 229.1 +/- 3.1%) in comparison with normal tissues (115.7 +/- 3.7%). Furthermore, anti-IGFI-R immunoliposomes displayed specific tumor cell association (44.2 +/- 1.6% vs. IgG liposomes, 0.8 +/- 0.3%; P < 0.0001) and internalization in human neuroendocrine tumor cells in vitro and superior antitumor efficacy in vivo (life span 31.5 +/- 2.2 d vs. untreated control, 19 +/- 0.6, P = 0.008). Conclusion: IGFI-R overexpression seems to be a common characteristic of otherwise heterogenous NETs. Novel anti-IGFI-R immunoliposomes have been developed and successfully tested in a preclinical model for human GEP-NETs. Moreover in vitro experiments indicate that usage of this agent could also present a promising approach for other tumor entities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite successful intensive care a substantial portion of critically ill patients dies after discharge from the intensive care unit or hospital. Observational studies investigating long-term survival of critically ill patients reported that most deaths occur during the first months or year after discharge. Only limited data on the causes of impaired quality of life and post-intensive care unit deaths exist in the current literature. In this manuscript we hypothesize that the acute inflammatory response which characteristically accompanies critical illness is ensued by a prolonged imbalance or activation of the immune system. Such a chronic low-grade inflammatory response to critical illness may be sub-clinical and persist for a variable period of time after discharge from the intensive care unit and hospital. Chronic inflammation is a well-recognized risk factor for long-term morbidity and mortality, particularly from cardiovascular causes, and may thus partly contribute to the impaired quality of life as well as increased morbidity and mortality following intensive care unit and hospital discharge of critically ill patients. Assuming that critical illness is indeed followed by a prolonged inflammatory response, important implications for treatment would arise. An interesting and potentially beneficial therapy could be the administration of immune-modulating drugs during the time after intensive care unit or hospital discharge until chronic inflammation has subsided. Statins are well-investigated and effective drugs to attenuate chronic inflammation and could potentially also improve long-term outcome of critically ill patients after intensive care unit or hospital discharge. Future studies evaluating the course of inflammation during and after critical illness as well as its response to statin therapy are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis is the most common form of joint disease and the leading cause of pain and physical disability in the elderly. Therapeutic ultrasound is one of several physical therapy modalities suggested for the management of pain and loss of function due to osteoarthritis (OA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patient comments and empirical studies suggest an influence of stress on inflammatory bowel diseases (IBD). We performed a quality assessment of previous studies on the effect of stress reduction on IBD in order to formulate recommendations for future studies and to evaluate their potential for improvement.