943 resultados para Testis biopsy
Resumo:
It is proposed that select oligomers of polymer d-lactic acid (PDLA) will form a stereocomplex with l-lactate in vivo, producing lactate deficiency in tumor cells. Those cancer cells that utilize transport of lactate to maintain electrical neutrality may cease to multiply or die because of lactate trapping, and those cancer cells that benefit from utilization of extracellular lactate may be impaired. Intracellular trapping of lactate produces a different physiology than inhibition of LDH because the cell loses the option of shuttling pyruvate to an alternative pathway to produce an anion. Conjugated with stains or fluorescent probes, PDLA oligomers may be an agent for the diagnosis of tissue lactate and possibly cell differentiation in biopsy specimens. Preliminary experimental evidence is presented confirming that PDLA in high concentrations is cytotoxic and that l-lactate forms a presumed stereocomplex with PDLA. Future work should be directed at isolation of biologically active oligomers of PDLA.
Resumo:
Histopathology is the clinical standard for tissue diagnosis. However, histopathology has several limitations including that it requires tissue processing, which can take 30 minutes or more, and requires a highly trained pathologist to diagnose the tissue. Additionally, the diagnosis is qualitative, and the lack of quantitation leads to possible observer-specific diagnosis. Taken together, it is difficult to diagnose tissue at the point of care using histopathology.
Several clinical situations could benefit from more rapid and automated histological processing, which could reduce the time and the number of steps required between obtaining a fresh tissue specimen and rendering a diagnosis. For example, there is need for rapid detection of residual cancer on the surface of tumor resection specimens during excisional surgeries, which is known as intraoperative tumor margin assessment. Additionally, rapid assessment of biopsy specimens at the point-of-care could enable clinicians to confirm that a suspicious lesion is successfully sampled, thus preventing an unnecessary repeat biopsy procedure. Rapid and low cost histological processing could also be potentially useful in settings lacking the human resources and equipment necessary to perform standard histologic assessment. Lastly, automated interpretation of tissue samples could potentially reduce inter-observer error, particularly in the diagnosis of borderline lesions.
To address these needs, high quality microscopic images of the tissue must be obtained in rapid timeframes, in order for a pathologic assessment to be useful for guiding the intervention. Optical microscopy is a powerful technique to obtain high-resolution images of tissue morphology in real-time at the point of care, without the need for tissue processing. In particular, a number of groups have combined fluorescence microscopy with vital fluorescent stains to visualize micro-anatomical features of thick (i.e. unsectioned or unprocessed) tissue. However, robust methods for segmentation and quantitative analysis of heterogeneous images are essential to enable automated diagnosis. Thus, the goal of this work was to obtain high resolution imaging of tissue morphology through employing fluorescence microscopy and vital fluorescent stains and to develop a quantitative strategy to segment and quantify tissue features in heterogeneous images, such as nuclei and the surrounding stroma, which will enable automated diagnosis of thick tissues.
To achieve these goals, three specific aims were proposed. The first aim was to develop an image processing method that can differentiate nuclei from background tissue heterogeneity and enable automated diagnosis of thick tissue at the point of care. A computational technique called sparse component analysis (SCA) was adapted to isolate features of interest, such as nuclei, from the background. SCA has been used previously in the image processing community for image compression, enhancement, and restoration, but has never been applied to separate distinct tissue types in a heterogeneous image. In combination with a high resolution fluorescence microendoscope (HRME) and a contrast agent acriflavine, the utility of this technique was demonstrated through imaging preclinical sarcoma tumor margins. Acriflavine localizes to the nuclei of cells where it reversibly associates with RNA and DNA. Additionally, acriflavine shows some affinity for collagen and muscle. SCA was adapted to isolate acriflavine positive features or APFs (which correspond to RNA and DNA) from background tissue heterogeneity. The circle transform (CT) was applied to the SCA output to quantify the size and density of overlapping APFs. The sensitivity of the SCA+CT approach to variations in APF size, density and background heterogeneity was demonstrated through simulations. Specifically, SCA+CT achieved the lowest errors for higher contrast ratios and larger APF sizes. When applied to tissue images of excised sarcoma margins, SCA+CT correctly isolated APFs and showed consistently increased density in tumor and tumor + muscle images compared to images containing muscle. Next, variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was further tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. The results indicate that SCA+CT can accurately delineate APFs in heterogeneous tissue, which is essential to enable automated and rapid surveillance of tissue pathology.
Two primary challenges were identified in the work in aim 1. First, while SCA can be used to isolate features, such as APFs, from heterogeneous images, its performance is limited by the contrast between APFs and the background. Second, while it is feasible to create mosaics by scanning a sarcoma tumor bed in a mouse, which is on the order of 3-7 mm in any one dimension, it is not feasible to evaluate an entire human surgical margin. Thus, improvements to the microscopic imaging system were made to (1) improve image contrast through rejecting out-of-focus background fluorescence and to (2) increase the field of view (FOV) while maintaining the sub-cellular resolution needed for delineation of nuclei. To address these challenges, a technique called structured illumination microscopy (SIM) was employed in which the entire FOV is illuminated with a defined spatial pattern rather than scanning a focal spot, such as in confocal microscopy.
Thus, the second aim was to improve image contrast and increase the FOV through employing wide-field, non-contact structured illumination microscopy and optimize the segmentation algorithm for new imaging modality. Both image contrast and FOV were increased through the development of a wide-field fluorescence SIM system. Clear improvement in image contrast was seen in structured illumination images compared to uniform illumination images. Additionally, the FOV is over 13X larger than the fluorescence microendoscope used in aim 1. Initial segmentation results of SIM images revealed that SCA is unable to segment large numbers of APFs in the tumor images. Because the FOV of the SIM system is over 13X larger than the FOV of the fluorescence microendoscope, dense collections of APFs commonly seen in tumor images could no longer be sparsely represented, and the fundamental sparsity assumption associated with SCA was no longer met. Thus, an algorithm called maximally stable extremal regions (MSER) was investigated as an alternative approach for APF segmentation in SIM images. MSER was able to accurately segment large numbers of APFs in SIM images of tumor tissue. In addition to optimizing MSER for SIM image segmentation, an optimal frequency of the illumination pattern used in SIM was carefully selected because the image signal to noise ratio (SNR) is dependent on the grid frequency. A grid frequency of 31.7 mm-1 led to the highest SNR and lowest percent error associated with MSER segmentation.
Once MSER was optimized for SIM image segmentation and the optimal grid frequency was selected, a quantitative model was developed to diagnose mouse sarcoma tumor margins that were imaged ex vivo with SIM. Tumor margins were stained with acridine orange (AO) in aim 2 because AO was found to stain the sarcoma tissue more brightly than acriflavine. Both acriflavine and AO are intravital dyes, which have been shown to stain nuclei, skeletal muscle, and collagenous stroma. A tissue-type classification model was developed to differentiate localized regions (75x75 µm) of tumor from skeletal muscle and adipose tissue based on the MSER segmentation output. Specifically, a logistic regression model was used to classify each localized region. The logistic regression model yielded an output in terms of probability (0-100%) that tumor was located within each 75x75 µm region. The model performance was tested using a receiver operator characteristic (ROC) curve analysis that revealed 77% sensitivity and 81% specificity. For margin classification, the whole margin image was divided into localized regions and this tissue-type classification model was applied. In a subset of 6 margins (3 negative, 3 positive), it was shown that with a tumor probability threshold of 50%, 8% of all regions from negative margins exceeded this threshold, while over 17% of all regions exceeded the threshold in the positive margins. Thus, 8% of regions in negative margins were considered false positives. These false positive regions are likely due to the high density of APFs present in normal tissues, which clearly demonstrates a challenge in implementing this automatic algorithm based on AO staining alone.
Thus, the third aim was to improve the specificity of the diagnostic model through leveraging other sources of contrast. Modifications were made to the SIM system to enable fluorescence imaging at a variety of wavelengths. Specifically, the SIM system was modified to enabling imaging of red fluorescent protein (RFP) expressing sarcomas, which were used to delineate the location of tumor cells within each image. Initial analysis of AO stained panels confirmed that there was room for improvement in tumor detection, particularly in regards to false positive regions that were negative for RFP. One approach for improving the specificity of the diagnostic model was to investigate using a fluorophore that was more specific to staining tumor. Specifically, tetracycline was selected because it appeared to specifically stain freshly excised tumor tissue in a matter of minutes, and was non-toxic and stable in solution. Results indicated that tetracycline staining has promise for increasing the specificity of tumor detection in SIM images of a preclinical sarcoma model and further investigation is warranted.
In conclusion, this work presents the development of a combination of tools that is capable of automated segmentation and quantification of micro-anatomical images of thick tissue. When compared to the fluorescence microendoscope, wide-field multispectral fluorescence SIM imaging provided improved image contrast, a larger FOV with comparable resolution, and the ability to image a variety of fluorophores. MSER was an appropriate and rapid approach to segment dense collections of APFs from wide-field SIM images. Variables that reflect the morphology of the tissue, such as the density, size, and shape of nuclei and nucleoli, can be used to automatically diagnose SIM images. The clinical utility of SIM imaging and MSER segmentation to detect microscopic residual disease has been demonstrated by imaging excised preclinical sarcoma margins. Ultimately, this work demonstrates that fluorescence imaging of tissue micro-anatomy combined with a specialized algorithm for delineation and quantification of features is a means for rapid, non-destructive and automated detection of microscopic disease, which could improve cancer management in a variety of clinical scenarios.
Resumo:
Effective dosages for enzyme replacement therapy (ERT) in Pompe disease are much higher than for other lysosomal storage disorders, which has been attributed to low cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle. We have previously demonstrated the benefit of increased CI-MPR-mediated uptake of recombinant human acid-α-glucosidase during ERT in mice with Pompe disease following addition of albuterol therapy. Currently we have completed a pilot study of albuterol in patients with late-onset Pompe disease already on ERT for >2 yr, who were not improving further. The 6-min walk test (6MWT) distance increased in all 7 subjects at wk 6 (30±13 m; P=0.002), wk 12 (34±14 m; P=0.004), and wk 24 (42±37 m; P=0.02), in comparison with baseline. Grip strength was improved significantly for both hands at wk 12. Furthermore, individual subjects reported benefits; e.g., a female patient could stand up from sitting on the floor much more easily (time for supine to standing position decreased from 30 to 11 s), and a male patient could readily swing his legs out of his van seat (hip abduction increased from 1 to 2+ on manual muscle testing). Finally, analysis of the quadriceps biopsies suggested increased CI-MPR at wk 12 (P=0.08), compared with baseline. With the exception of 1 patient who succumbed to respiratory complications of Pompe disease in the first week, only mild adverse events have been reported, including tremor, transient difficulty falling asleep, and mild urinary retention (requiring early morning voiding). Therefore, this pilot study revealed initial safety and efficacy in an open label study of adjunctive albuterol therapy in patients with late-onset Pompe disease who had been stable on ERT with no improvements noted over the previous several years.
Resumo:
La estucoqueratosis es una patología dérmica que cursa con tumoraciones queratósicas asintomáticas, benignas, blanco-grisáceas y de pequeño tamaño. Éstas suelen localizarse en las extremidades (especialmente en las inferiores) en torno al tobillo. Su etiología es desconocida y su diagnóstico se realiza mediante una correcta anamnesis y exploración física ya que la morfología, localización y edad de presentación son claves para poder establecer un diagnóstico diferencial con otras afecciones aunque en caso necesario también se puede recurrir a la biopsia. Constituye una entidad clínica con especial interés podológico dada su frecuente aparición en las extremidades inferiores, de ahí la necesidad de conocerla y de saber realizar un correcto diagnóstico diferencial. Presentamos el caso de un varón de 45 años sin antecedentes dermatológicos que presenta estucoqueratosis en la extremidad inferior y que acude al Servicio de Dermatología del Hospital Naval de Ferrol.
Resumo:
Background: Human papillomavirus (HPV), the causal agent of cervical cancer, appears to be involved in the etiology of cancer of the oral cavity and oropharynx. To investigate these associations, we conducted a multicenter case-control study of cancer of the oral cavity and oropharynx in nine countries. Methods: We recruited 1670 case patients (1415 with cancer of the oral cavity and 255 with cancer of the oropharynx) and 1732 control subjects and obtained an interview, oral exfoliated cells, and blood from all participants and fresh biopsy specimens from case patients. HPV DNA was detected by polymerase chain reaction (PCR). Antibodies against HPV16 L1, E6, and E7 proteins in plasma were detected with enzyme-linked immunosorbent assays. Multivariable models were used for case-control and case-case comparisons. Results: HPV DNA was detected in biopsy specimens of 3.9% (95% confidence interval [CI]=2.5% to 5.3%) of 766 cancers of the oral cavity with valid PCR results and 18.3% (95% CI=12.0% to 24.7%) of 142 cancers of the oropharynx (oropharynx and tonsil combined) with valid PCR results. HPV DNA in cancer biopsy specimens was detected less frequently among tobacco smokers and paan chewers and more frequently among subjects who reported more than one sexual partner or who practiced oral sex. HPV16 DNA was found in 94.7% of HPV DNA-positive case patients. HPV DNA in exfoliated cells was not associated with cancer risk or with HPV DNA detection in biopsy specimens. Antibodies against HPV16 L1 were associated with risk for cancers of the oral cavity (odds ratio [OR]=1.5, 95% CI=1.1 to 2.1) and the oropharynx (OR=3.5, 95% CI=2.1 to 5.9). Antibodies against HPV16 E6 or E7 were also associated with risk for cancers of the oral cavity (OR=2.9, 95% CI=1.7 to 4.8) and the oropharynx (OR=9.2, 95% CI=4.8 to 17.7). Conclusions: HPV appears to play an etiologic role in many cancers of the oropharynx and possibly a small subgroup of cancers of the oral cavity. The most common HPV type in genital cancers (HPV16) was also the most common in these tumors. The mechanism of transmission of HPV to the oral cavity warrants further investigation.
Resumo:
Cystatin Related Epididymal Spermatogenic protein (CRES) is expressed in both the testis and epididymis and found associated with spermatozoa. It appears as non-glycosylated (14 and 12 kDa) and glycosylated isoforms (19 and 17 kDa). The role of CRES is enigmatic and dependent on localization of its isoforms, which is the objective of this study. The initial approach was to investigate testicular and epididymal origins of these isoforms by immunohistochemistry and immunogold cytochemistry. To further pinpoint CRES localization we then selectively extracted and fractionated epididymal spermatozoa in order to find by immunoblotting which sperm fractions contained CRES isoforms. Immunohistochemical analysis of mouse spermatogenesis showed that CRES was expressed in the tail cytoplasm of elongating spermatids from step 9-16, with a pattern reminiscent of outer dense fibre (ODF) proteins. Ultrastructural immunocytochemistry revealed that the immunogold label was concentrated over growing ODFs and mitochondrial sheath in the testes which persisted in spermatozoa through the epididymis. Sequential extractions of isolated sperm tails with Triton X-100-dithiothreitol (DTT) to remove the mitochondrial sheath, whose extract contained an unrelated 66 kDa immunoreactive band, followed by either sodium dodecyl sulfate (SDS)-DTT or urea-DTT to solubilise accessory fibres of the tail revealed a 14 kDa immunoreactive band associated with the ODF. In addition, Western blots revealed glycosylated and non-glycosylated CRES isoforms in nonyl phenoxylpolyethoxylethanol (NP40) extracts of the caput, but not cauda, sperm. Immunohistochemical analysis of the caput and cauda epithelium showed that CRES is secreted by the Golgi apparatus of the ii initial segment, fills the proximal caput lumen, and disappears by mid caput. Western blots of caput and cauda tissue and luminal fluid revealed 14 and 19 kDa immunoreactive bands in caput tissues and luminal fluid, but not in the cauda. This study concludes that there are two origins of CRES, one arising in the testis and the other in the epididymis. Testicular CRES is ionically and covalently associated with the ODF while epididymal CRES is detergent soluble and is most likely associated temporarily with the surface of caput epididymal sperm.
Resumo:
Purpose: We characterized interleukin-8 (IL-8) and IL-8 receptor expression (CXCR1 and CXCR2) in prostate cancer to address their significance to this disease. Experimental Design: Immunohistochemistry was conducted on 40 cases of human prostate biopsy containing histologically normal and neoplastic tissue, excised from patients with locally confined or invasive androgen-dependent prostate cancer, and 10 cases of transurethral resection of the prostate material from patients with androgen-independent disease. Results: Weak to moderate IL-8 expression was strictly localized to the apical membrane of normal prostate epithelium. In contrast, membranous expression of IL-8, CXCR1, and CXCR2 was nonapical in cancer cells of Gleason pattern 3 and 4, whereas circumferential expression was present in Gleason pattern 5 and androgen-independent prostate cancer. Each of IL-8, CXCR1, and CXCR2 were also increasingly localized to the cytoplasm of cancer cells in correlation with advancing stage of disease. Cytoplasmic expression (but not apical membrane expression) of IL-8 in Gleason pattern 3 and 4 cancer correlated with Ki-67 expression (R = 0.79; P <0.001), cyclin D1 expression (R = 0.79; P <0.001), and microvessel density (R = 0.81; P <0.001). In vitro studies on androgen-independent PC3 cells confirmed the mitogenic activity of IL-8, increasing the rate of cell proliferation through activation of both CXCR1 and CXCR2 receptors. Conclusions: We propose that the concurrent increase in IL-8 and IL-8 receptor expression in human prostate cancer induces autocrine signaling that may be functionally significant in initiating and promoting the progression of prostate cancer by underpinning cell proliferation and angiogenesis.
Resumo:
Previous studies have revealed considerable interobserver and intraobserver variation in the histological classification of preinvasive cervical squamous lesions. The aim of the present study was to develop a decision support system (DSS) for the histological interpretation of these lesions. Knowledge and uncertainty were represented in the form of a Bayesian belief network that permitted the storage of diagnostic knowledge and, for a given case, the collection of evidence in a cumulative manner that provided a final probability for the possible diagnostic outcomes. The network comprised 8 diagnostic histological features (evidence nodes) that were each independently linked to the diagnosis (decision node) by a conditional probability matrix. Diagnostic outcomes comprised normal; koilocytosis; and cervical intraepithelial neoplasia (CIN) 1, CIN II, and CIN M. For each evidence feature, a set of images was recorded that represented the full spectrum of change for that feature. The system was designed to be interactive in that the histopathologist was prompted to enter evidence into the network via a specifically designed graphical user interface (i-Path Diagnostics, Belfast, Northern Ireland). Membership functions were used to derive the relative likelihoods for the alternative feature outcomes, the likelihood vector was entered into the network, and the updated diagnostic belief was computed for the diagnostic outcomes and displayed. A cumulative probability graph was generated throughout the diagnostic process and presented on screen. The network was tested on 50 cervical colposcopic biopsy specimens, comprising 10 cases each of normal, koilocytosis, CIN 1, CIN H, and CIN III. These had been preselected by a consultant gynecological pathologist. Using conventional morphological assessment, the cases were classified on 2 separate occasions by 2 consultant and 2 junior pathologists. The cases were also then classified using the DSS on 2 occasions by the 4 pathologists and by 2 medical students with no experience in cervical histology. Interobserver and intraobserver agreement using morphology and using the DSS was calculated with K statistics. Intraobserver reproducibility using conventional unaided diagnosis was reasonably good (kappa range, 0.688 to 0.861), but interobserver agreement was poor (kappa range, 0.347 to 0.747). Using the DSS improved overall reproducibility between individuals. Using the DSS, however, did not enhance the diagnostic performance of junior pathologists when comparing their DSS-based diagnosis against an experienced consultant. However, the generation of a cumulative probability graph also allowed a comparison of individual performance, how individual features were assessed in the same case, and how this contributed to diagnostic disagreement between individuals. Diagnostic features such as nuclear pleomorphism were shown to be particularly problematic and poorly reproducible. DSSs such as this therefore not only have a role to play in enhancing decision making but also in the study of diagnostic protocol, education, self-assessment, and quality control. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Diabetics have a significantly higher percentage of sperm with nuclear DNA (nDNA) fragmentation and increased levels of advanced glycation end products (AGEs), in their testis, epididymis and sperm. As the receptor for AGEs (RAGE) is important to oxidative stress and cell dysfunction, we hypothesise, that it may be involved in sperm nDNA damage. METHODS: Immunohistochemistry was performed to determine the presence of RAGE in the human testis and epididymis. A comparison of the receptor's incidence and localisation on sperm from 10 diabetic and 11 non-diabetic men was conducted by blind semi-quantitative assessment of the immunostaining. ELISA analysis ascertained RAGE levels in seminal plasma and sperm from 21 diabetic and 31 non-diabetic subjects. Dual labelling immunolocalisation was employed to evaluate RAGE's precise location on the sperm head. RESULTS: RAGE was found throughout the testis, caput epididymis, particularly the principle cells apical region, and on sperm acrosomes. The number of sperm displaying RAGE and the overall protein amount found in sperm and seminal plasma were significantly higher in samples from diabetic men (p
Resumo:
Light microscopic studies comparing sperm parameters show little association between diabetes and male fertility. However, with the introduction of new analytical techniques, evidence is now emerging of previously undetectable affects of diabetes on sperm function. Specifically, a recent study has found significantly higher sperm nuclear DNA (nDNA) fragmentation in diabetic men. As advanced glycation end products (AGEs) are important instigators of oxidative stress and cell dysfunction in numerous diabetic complications, we hypothesized that these compounds could also be present in the male reproductive tract. The presence and localization of the most prominent AGE, carboxymethyl-lysine (CML), in the human testis, epididymis and sperm was determined by immunohistochemistry. Parallel ELISA and Western blot analyses were performed to ascertain the amount of CML in seminal plasma and sperm from 13 diabetic and 9 non-diabetic subjects. CML immunoreactivity was found through out the seminiferous epithelium, the nuclei of spermatogonia and spermatocytes, in the basal and principle cells (cytoplasm and nuclei) of the caput epididymis and on most sperm tails, mid pieces and all cytoplasmic droplets. The acrosomal cap, especially the equatorial band, was prominently stained in diabetic samples only. The amount of CML was significantly higher (p = 0.004) in sperm from non diabetic men. Considering the known detrimental actions of AGEs in other organs, the presence, location and quantity of CML, particularly the increased expression found in diabetic men, suggests that these compounds may play a hitherto unrecognized role in male infertility.
Resumo:
OBJECTIVE: To determine whether improvement in quality of semen over 4 consecutive days of electroejaculation in men with chronic spinal cord injury (SCI) was consistent with epididymal necrospermia. DESIGN: Prospective study of a random sample of men with SCI. SETTING: A southeastern Australian SCI management center in collaboration with the specialist andrology service of a university-based department of obstetrics and gynecology in a tertiary referral hospital. PATIENT(S): Nine men with chronic spinal cord injury. INTERVENTION(S): Semen samples were obtained by using electroejaculation, and testicular biopsy samples were obtained by using fine-needle tissue aspiration. MAIN OUTCOME MEASURE(S): Semen analysis was performed according to World Health Organization criteria. Testicular biopsy and electron microscopy were done by using standard techniques. RESULT(S): During up to 4 days of consecutive-day electroejaculation, sperm motility and viability in semen obtained from men with chronic SCI increased by an average of 23% on days 2 and 3. The severity of the degenerative changes and the numbers of spermatozoa affected on day 1 became less marked by day 4. The changes were not present in late spermatids obtained from testicular biopsies. CONCLUSION(S): The asthenospermia of chronic SCI is similar to epididymal necrospermia and can be improved by consecutive-day electroejaculation.
Resumo:
Protein kinases are important signalling molecules critical for normal cell growth and development. CDK11(p58) is a p34(cdc2) related protein kinase, and plays an important role in normal cell cycle progression. In this study, we mainly characterized the protein expression of CDK11(p58) during postnatal development in mouse testes and examined the cellular localization of CDK11(p58) and cyclinD3, which was associated with CDK11(p58) in mammalian cells. Western blot analysis revealed that CDK11(p58) was present in the early stages of development. It gradually increased and reached a peak in adult testes. The protein expression of CDK11(p58) was further analysed by immunohistochemistry due to its developmentally regulated expression. The variable immunostaining patterns of CDK11(p58) were visualized during different developmental periods and, in adult mouse, different stages of seminiferous tubules. CDK11(p58) expression was detected in proliferating germ cells in the early stages of developing testes. In adult testes, the protein was expressed in pachytene primary spermatocytes from stage VII to XI of spermatogenesis and in postmeiotic spermatids in all stages at different levels. The colocalization of CDK11(p58) and cyclinD3 in the adult testis was revealed by immunofluorescence analysis.
Resumo:
We describe a malignant lymphoma of the parotid gland arising in a patient with Sjögren's syndrome. Diagnosis was established on needle biopsy which showed a mixed population of lymphoid cells. Immunohistochemistry revealed B-lymphoid cells, T-lymphoid cells and histiocytes. Clonal immunoglobulin heavy chain gene rearrangement was demonstrated using the polymerase chain reaction. Within the confines of the small biopsy, the lesion qualifies for the designation T-cell-rich histiocyte-rich B-cell lymphoma. The value of molecular techniques in the diagnosis of malignant lymphoma on limited tissue samples is highlighted by this case.
Resumo:
Light microscopic studies comparing sperm parameters show little association between diabetes and male fertility. However, with the introduction of new analytical techniques, evidence is now emerging of previously undetectable effects of diabetes on sperm function. Specifically, a recent study has found a significantly higher sperm nuclear DNA fragmentation in diabetic men. As advanced glycation end products (AGEs) are important instigators of oxidative stress and cell dysfunction in numerous diabetic complications, we hypothesized that these compounds could also be present in the male reproductive tract. The presence and localization of the most prominent AGE, carboxymethyl-lysine (CML), in the human testis, epididymis and sperm was determined by immunohistochemistry. Parallel ELISA and Western blot analyses were performed to ascertain the amount of CML in seminal plasma and sperm from 13 diabetic and nine non-diabetic subjects. CML immunoreactivity was found throughout the seminiferous epithelium, the nuclei of spermatogonia and spermatocytes, in the basal and principle cells cytoplasm and nuclei of the caput epididymis and on most sperm tails, mid pieces and all cytoplasmic droplets. The acrosomal cap, especially the equatorial band, was prominently stained in diabetic samples only. The amount of CML was significantly higher (p = 0.004) in sperm from non-diabetic men. Considering the known detrimental actions of AGEs in other organs, the presence, location and quantity of CML, particularly the increased expression found in diabetic men, suggest that these compounds may play a hitherto unrecognized role in male infertility.