928 resultados para Teoria formal e substancial do conflito de interesses
Resumo:
The molecular structural parameters of indophenol and its derivatives were calculated by semi-empirical molecular orbital quantum chemical method,The relation between molecular structural parameters and formal potentials was analyzed by principal factor analysis and multiple Linear regression method. It was found that the formal potential of indophenols has a good relation with two-center electron exchange energy, E-ex (2), resonance energy of O-C bond, E-ex (C-1-O), and molecular ionization potential, I-p, among 19 moleclular structural parameters. The regression equation is E-0' = 1. 47 x 10 (-3) E-ex (two) - 5. 74 x 10 (-2) E-ex (C-1 - O) - 1. 41 x 10 (-2) I-p with RC = 0. 9999 and SD = 0. 00424. It was confirmed by the relation between structure parameters and formal potentials, and the thermodynamic stability of its intermediate products that the H (+) ionization is prior to the electron transfer step in the oxidation mechanism.
Resumo:
When we reason about change over time, causation provides an implicit preference: we prefer sequences of situations in which one situation leads causally to the next, rather than sequences in which one situation follows another at random and without causal connections. In this paper, we explore the problem of temporal reasoning --- reasoning about change over time --- and the crucial role that causation plays in our intuitions. We examine previous approaches to temporal reasoning, and their shortcomings, in light of this analysis. We propose a new system for causal reasoning, motivated action theory, which builds upon causation as a crucial preference creterion. Motivated action theory solves the traditional problems of both forward and backward reasoning, and additionally provides a basis for a new theory of explanation.
Resumo:
A biotecnologia moderna está gerando um grande número de genes passíveis de serem utilizados para a melhoria genética do milho, e as técnicas de transformação genética de plantas poderão ser empregadas para alterar a funcionalidade in vivo destes genes via complementação, superexpressão ou silenciamento. Progressos expressivos foram conseguidos no desenvolvimento da tecnologia de transformação genética de milho na última década. A transformação genética do milho, considerada por algum tempo problemática, tornou-se, atualmente, um procedimento de rotina para vários genótipos na maioria dos laboratórios públicos e privados trabalhando com esta cultura. Nesta Circular Técnica, serão abordados aspectos da produção e utilização em campo do milho Bt, englobando desde as pesquisas iniciais para o isolamento e caracterização dos genes cry, sua transferência para cultivares de milho via biobalística ou Agrobacterium, sua integração em programas de melhoramento clássico assistido por marcadores moleculares e utilização destas novas cultivares em campo.
Resumo:
2007
Resumo:
2008
Resumo:
This paper discusses the use of relation algebra operations on formal contexts. These operations are a generalisation of some of the context operations that are described in the standard FCA textbook (Ganter & Wille, 1999). This paper extends previous research in this area with respect to applications and implementations. It also describes a software tool (FcaFlint) which in combination with FcaStone facilitates the application of relation algebra operations to contexts stored in many formats.
Resumo:
Wydział Nauk Społecznych: Instytut Psychologii
Resumo:
Dissertação apresentada à Universidade Fernando Pessoa, como parte dos requisitos necessários para a obtenção do grau Mestre em Criminologia
Resumo:
We survey several of the research efforts pursued by the iBench and snBench projects in the CS Department at Boston University over the last half dozen years. These activities use ideas and methodologies inspired by recent developments in other parts of computer science -- particularly in formal methods and in the foundations of programming languages -- but now specifically applied to the certification of safety-critical networking systems. This is research jointly led by Azer Bestavros and Assaf Kfoury with the participation of Adam Bradley, Andrei Lapets, and Michael Ocean.
Resumo:
In research areas involving mathematical rigor, there are numerous benefits to adopting a formal representation of models and arguments: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, broad accessibility has not been a priority in the design of formal verification tools that can provide these benefits. We propose a few design criteria to address these issues: a simple, familiar, and conventional concrete syntax that is independent of any environment, application, or verification strategy, and the possibility of reducing workload and entry costs by employing features selectively. We demonstrate the feasibility of satisfying such criteria by presenting our own formal representation and verification system. Our system’s concrete syntax overlaps with English, LATEX and MediaWiki markup wherever possible, and its verifier relies on heuristic search techniques that make the formal authoring process more manageable and consistent with prevailing practices. We employ techniques and algorithms that ensure a simple, uniform, and flexible definition and design for the system, so that it easy to augment, extend, and improve.
Resumo:
NetSketch is a tool for the specification of constrained-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. As a modeling tool, it enables the abstraction of an existing system while retaining sufficient information about it to carry out future analysis of safety properties. As a design tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal requirements for outsourced subsystems. NetSketch embodies a lightweight formal verification philosophy, whereby the power (but not the heavy machinery) of a rigorous formalism is made accessible to users via a friendly interface. NetSketch does so by exposing tradeoffs between exactness of analysis and scalability, and by combining traditional whole-system analysis with a more flexible compositional analysis. The compositional analysis is based on a strongly-typed Domain-Specific Language (DSL) for describing and reasoning about constrained-flow networks at various levels of sketchiness along with invariants that need to be enforced thereupon. In this paper, we define the formal system underlying the operation of NetSketch, in particular the DSL behind NetSketch's user-interface when used in "sketch mode", and prove its soundness relative to appropriately-defined notions of validity. In a companion paper [6], we overview NetSketch, highlight its salient features, and illustrate how it could be used in two applications: the management/shaping of traffic flows in a vehicular network (as a proxy for CPS applications) and in a streaming media network (as a proxy for Internet applications).
Resumo:
In college courses dealing with material that requires mathematical rigor, the adoption of a machine-readable representation for formal arguments can be advantageous. Students can focus on a specific collection of constructs that are represented consistently. Examples and counterexamples can be evaluated. Assignments can be assembled and checked with the help of an automated formal reasoning system. However, usability and accessibility do not have a high priority and are not addressed sufficiently well in the design of many existing machine-readable representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. We report on our attempt to evaluate our proposed design criteria by deploying within the classroom a lightweight formal verification system designed according to these criteria. The lightweight formal verification system was used within the instruction of a common application of formal reasoning: proving by induction formal propositions about functional code. We present all of the formal reasoning examples and assignments considered during this deployment, most of which are drawn directly from an introductory text on functional programming. We demonstrate how the design of the system improves the effectiveness and understandability of the examples, and how it aids in the instruction of basic formal reasoning techniques. We make brief remarks about the practical and administrative implications of the system’s design from the perspectives of the student, the instructor, and the grader.