894 resultados para Temperature sensors
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of nanoscale low-dimensional systems could boost the sensitivity of gas sensors. In this work we simulate a nanoscopic sensor based on carbon nanotubes with a large number of binding sites using ab initio density functional electronic structure calculations coupled to the Non-Equilibrium Green's Function formalism. We present a recipe where the adsorption process is studied followed by conductance calculations of a single defect system and of more realistic disordered system considering different coverages of molecules as one would expect experimentally. We found that the sensitivity of the disordered system is enhanced by a factor of 5 when compared to the single defect one. Finally, our results from the atomistic electronic transport are used as input to a simple model that connects them to experimental parameters such as temperature and partial gas pressure, providing a procedure for simulating a realistic nanoscopic gas sensor. Using this methodology we show that nitrogen-rich carbon nanotubes could work at room temperature with extremely high sensitivity. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4739280]
Resumo:
We report on a temperature sensor based on the monitoring of the luminescence spectrum of CdSe/ZnS nanocrystals, dispersed in mineral oil and inserted into the core of a photonic crystal fiber. The high overlap between the pump light and the nanocrystals as well as the luminescence guiding provided by the fiber geometry resulted in relatively high luminescence powers and improved optical signal-to-noise ratio (OSNR). Also, both core end interfaces were sealed so as to generate a more stable and robust waveguide structure. Temperature sensitivity experiments indicated a 70 pm/degrees C spectral shift over the 5 degrees C to 90 degrees C range.
Resumo:
Precipitation retrieval over high latitudes, particularly snowfall retrieval over ice and snow, using satellite-based passive microwave spectrometers, is currently an unsolved problem. The challenge results from the large variability of microwave emissivity spectra for snow and ice surfaces, which can mimic, to some degree, the spectral characteristics of snowfall. This work focuses on the investigation of a new snowfall detection algorithm specific for high latitude regions, based on a combination of active and passive sensors able to discriminate between snowing and non snowing areas. The space-borne Cloud Profiling Radar (on CloudSat), the Advanced Microwave Sensor units A and B (on NOAA-16) and the infrared spectrometer MODIS (on AQUA) have been co-located for 365 days, from October 1st 2006 to September 30th, 2007. CloudSat products have been used as truth to calibrate and validate all the proposed algorithms. The methodological approach followed can be summarised into two different steps. In a first step, an empirical search for a threshold, aimed at discriminating the case of no snow, was performed, following Kongoli et al. [2003]. This single-channel approach has not produced appropriate results, a more statistically sound approach was attempted. Two different techniques, which allow to compute the probability above and below a Brightness Temperature (BT) threshold, have been used on the available data. The first technique is based upon a Logistic Distribution to represent the probability of Snow given the predictors. The second technique, defined Bayesian Multivariate Binary Predictor (BMBP), is a fully Bayesian technique not requiring any hypothesis on the shape of the probabilistic model (such as for instance the Logistic), which only requires the estimation of the BT thresholds. The results obtained show that both methods proposed are able to discriminate snowing and non snowing condition over the Polar regions with a probability of correct detection larger than 0.5, highlighting the importance of a multispectral approach.
Resumo:
A year of satellite-borne lidar CALIOP data is analyzed and statistics on occurrence and distribution of bulk properties of cirri are provided. The relationship between environmental and cloud physical parameters and the shape of the backscatter profile (BSP) is investigated. It is found that CALIOP BSP is mainly affected by cloud geometrical thickness while only minor impacts can be attributed to other quantities such as optical depth or temperature. To fit mean BSPs as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. It is demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile. The IWC parameterization is included into the RT-RET retrieval algorithm, that is exploited to analyze infrared radiance measurements in presence of cirrus clouds during the ECOWAR field campaign. Retrieved microphysical and optical properties of the observed cloud are used as input parameters in a forward RT simulation run over the 100-1100 cm-1 spectral interval and compared with interferometric data to test the ability of the current single scattering properties database of ice crystal to reproduce realistic optical features. Finally a global scale investigation of cirrus clouds is performed by developing a collocation algorithm that exploits satellite data from multiple sensors (AIRS, CALIOP, MODIS). The resulting data set is utilized to test a new infrared hyperspectral retrieval algorithm. Retrieval products are compared to data and in particular the cloud top height (CTH) product is considered for this purpose. A better agreement of the retrieval with the CALIOP CTH than MODIS is found, even if some cases of underestimation and overestimation are observed.
Resumo:
Inductive-capacitive (LC) resonant circuit sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or in situations where large numbers of sensors are needed. They are also advantageous in applications where access to the sensor is limited or impossible or when sensors are needed on a disposable basis. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. The purpose of this work is to develop new types of LC sensor systems that are simpler to fabricate (hence lower cost) or capable of monitoring multiple parameters simultaneously. One design presented in this work, referred to as the multi-element LC sensor, is able to measure multiple parameters simultaneously using a second capacitive element. Compared to conventional LC sensors, this design can sense multiple parameters with a higher detection range than two independent sensors while maintaining the same overall sensor footprint. In addition, the two-element sensor does not suffer from interference issues normally encountered while implementing two LC sensors in close proximity. Another design, the single-spiral inductive-capacitive sensor, utilizes the parasitic capacitance of a coil or spring structure to form a single layer LC resonant circuit. Unlike conventional LC sensors, this design is truly planar, thus simplifying its fabrication process and reducing sensor cost. Due to the simplicity of this sensor layout it will be easier and more cost-effective for embedding in common building or packaging materials during manufacturing processes, thereby adding functionality to current products (such as drywall sheets) while having a minor impact on overall unit cost. These modifications to the LC sensor design significantly improve the functionality and commercial feasibility of this technology, especially for applications where a large array of sensors or multiple sensing parameters are required.
Resumo:
Over the last decade, several hundred seals have been equipped with conductivity-temperature-depth sensors in the Southern Ocean for both biological and physical oceanographic studies. A calibrated collection of seal-derived hydrographic data is now available, consisting of more than 165,000 profiles. The value of these hydrographic data within the existing Southern Ocean observing system is demonstrated herein by conducting two state estimation experiments, differing only in the use or not of seal data to constrain the system. Including seal-derived data substantially modifies the estimated surface mixedlayer properties and circulation patterns within and south of the Antarctic Circumpolar Current. Agreement with independent satellite observations of sea ice concentration is improved, especially along the East Antarctic shelf. Instrumented animals efficiently reduce a critical observational gap, and their contribution to monitoring polar climate variability will continue to grow as data accuracy and spatial coverage increase.