963 resultados para TURBULENT-FLOW


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixing phenomena observed when the flow rate in a single loop of the primary circuit is changed can influence the operation of pressurized water reactor (PWR) by inducing local gradients of boron concentration or coolant temperature. Analysis of one-dimensional Laser Doppler Anemometry (LDA) measurements during the start-up and shutdown of pump on a single loop of the ROCOM test facility has been performed. The effect of a step change and a ramped change in the flow rate on the axial and azimuthal velocities was examined. Numerical simulations were also performed for the step change in the flow rate that gave quantitative agreement with the axial velocities. Phenomenological agreement was made on the turbulent kinetic energy; however, observed values were a factor of 2.5 less than the turbulent kinetic energy derived from the measurements. © 2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pipelines are one of the safest means to transport crude oil, but are not spill-free. This is of concern in North America, due to the large volumes of crude oil shipped by Canadian producers and the lengthy network of pipelines. Each pipeline crosses many rivers, supporting a wide variety of human activities, and rich aquatic life. However, there is a knowledge gap on the risks of contamination of river beds due to oil spills. This thesis addresses this knowledge gap by focussing on mechanisms that transport water (and contaminants) from the free surface flow to the bed sediments, and vice-versa. The work focuses on gravel rivers, in which bed sediments are sufficiently permeable that pressure gradients caused by the interactions of flow with topographic elements (gravel bars), or changes in direction induce exchanges of water between the free surface flow and the bed, known as hyporheic flows. The objectives of the thesis are: to present a new method to visualize and quantify hyporheic flows in laboratory experiments; to conduct a novel series of experiments on hyporheic flow induced by a gravel bar under different free surface flows. The new method to quantify hyporheic flows rests on injections of a solution of dye and water. The method yielded accurate flow lines, and reasonable estimates of the hyporheic flow velocities. The present series of experiments was carried out in a 11 m long, 0.39 m wide, and 0.41 m deep tilting flume. The gravel had a mean particle size of 7.7 mm. Different free surface flows were imposed by changing the flume slope and flow depth. Measured hyporheic flows were turbulent. Smaller free surface flow depths resulted in stronger hyporheic flows (higher velocities, and deeper dye penetration into the sediment). A significant finding is that different free surface flows (different velocities, Reynolds number, etc.) produce similar hyporheic flows as long as the downstream hydraulic gradients are similar. This suggests, that for a specified bar geometry, the characteristics of the hyporheic flows depend on the downstream hydraulic gradients, and not or only minimally on the internal dynamics of the free surface flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world’s first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5–2.4 m/s in a depth range of 25–30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of Reynolds number variation in a vertical double pipe counterflow heat exchanger due to the changes in viscosity can cause the change in flow regime, for instance, when heats up and cools down, it can convert from turbulent to laminar or inversely, that can have significant effect on heat transfer coefficient and pressure drop. Mainly, the range of transition phase has been studied in this study with the investigation of silica nanofluid dispersed in water in three different concentrations. The results have been compared with distilled water sample and showed a remarkable raise in heat transfer coefficient while pressure drop has been increased respectively, as well. Although pumping power has to go up at the same time and it is a drawback, heat transfer efficiency grows for diluted samples. On the other hand, for the most concentrated sample, effect of pressure drop dominates which leads to decline in the overall efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les aspirateurs de turbines hydrauliques jouent un rôle crucial dans l’extraction de l’énergie disponible. Dans ce projet, les écoulements dans l’aspirateur d’une turbine de basse chute ont été simulés à l’aide de différents modèles de turbulence dont le modèle DDES, un hybride LES/RANS, qui permet de résoudre une partie du spectre turbulent. Déterminer des conditions aux limites pour ce modèle à l’entrée de l’aspirateur est un défi. Des profils d’entrée 1D axisymétriques et 2D instationnaires tenant compte des sillages et vortex induits par les aubes de la roue ont notamment été testés. Une fluctuation artificielle a également été imposée, afin d’imiter la turbulence qui existe juste après la roue. Les simulations ont été effectuées pour deux configurations d’aspirateur du projet BulbT. Pour la deuxième, plusieurs comparaisons avec des données expérimentales ont été faites pour deux conditions d’opération, à charge partielle et dans la zone de baisse rapide du rendement après le point de meilleur rendement. Cela a permis d’évaluer l’efficacité et les lacunes de la modélisation turbulente et des conditions limites à travers leurs effets sur les quantités globales et locales. Les résultats ont montrés que les structures tourbillonnaires et sillages sortant de la roue sont adéquatement résolus par les simulations DDES de l’aspirateur, en appliquant les profils instationnaires bidimensionnels et un schéma de faible dissipation pour le terme convectif. En outre, les effets de la turbulence artificielle à l’entrée de l’aspirateur ont été explorés à l’aide de l’estimation de l’intermittence du décollement, de corrélations en deux points, du spectre d’énergie et du concept de structures cohérentes lagrangiennes. Ces analyses ont montré que les détails de la dynamique de l’écoulement et de la séparation sont modifiés, ainsi que les patrons des lignes de transport à divers endroits de l’aspirateur. Cependant, les quantités globales comme le coefficient de récupération de l’aspirateur ne sont pas influencées par ces spécificités locales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the system’s heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles. An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kg/m2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocity on the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign. Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field. Results were compared and shown to agree with numerical simulations of colleagues from EPFL, Switzerland. In addition, a preliminary study was completed on the effect of a Taylor bubble passing through nucleate flow boiling, showing that the thinning thermal boundary layer within the film suppressed nucleation, thereby decreasing the heat transfer coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U-10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence held. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be C-en x 10(3) = 2.79U(10n)(-1) + 0.66 (U-10n < 5.2 m/s), C-en x 10(3) = C-hn x 10(3) = 1.2 (U-10n greater than or equal to 5.2 m/s), and C-dn x 10(3) = 11.7U(10n)(-2) + 0.668 (U-10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with an acceleration of up to 3-g in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Surface profile measurements in planes normal to the belt surface are conducted using cinematic Laser Induced Fluorescence and quantitative surface profiles are extracted at each instant in time. Using these measurements, free surface fluctuations are examined and the propagation behavior of these free surface ripples is studied. It is found that free surface fluctuations are generated in a region close to the belt surface, where sub-surface velocity fluctuations influence the behavior of these free surface features. These rapidly-changing surface features close to the belt appear to lead to the generation of freely-propagating waves far from the belt, outside the influence of the boundary layer. Sub-surface PIV measurements are performed in order to study the modification of the boundary layer flow field due to the effects of the water free surface. Cinematic planar PIV measurements are performed in horizontal planes parallel to the free surface by imaging the flow from underneath the tank, providing streamwise and wall-normal velocity fields. Additional planar PIV experiments are performed in vertical planes parallel to the belt surface in order to study the bahvior of streamwise and vertical velocity fields. It is found that the boundary layer grows rapidly near the free surface, leading to an overall thicker boundary layer close to the surface. This rapid boundary layer growth appears to be linked to a process of free surface bursting, the sudden onset of free surface fluctuations. Cinematic white light movies are recorded from beneath the water surface in order to determine the onset location of air entrainment. In addition, qualitative observations of these processes are made in order to determine the mechanisms leading to air entrainment present in this flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.