509 resultados para TUBAL LIGATION
Resumo:
INTRODUÇÃO: O transplante hepático é o único tratamento efetivo para uma variedade de doenças hepáticas irreversíveis. No entanto, o número limitado de doadores pediátricos leva ao uso de enxertos hepáticos de doadores adultos, com necessidade de anastomoses vasculares mais complexas. Essas anastomoses tornam-se complicadas pela diferença no calibre dos vasos entre o doador e o receptor, resultando em alterações do fluxo sanguíneo, estenose da anastomose venosa ou arterial e trombose. Os efeitos para regeneração hepática decorrentes da privação do fluxo sanguíneo pela veia porta ou pela artéria hepática não estão completamente elucidados. Experimentalmente, quando um lobo do fígado não recebe o fluxo venoso portal, é observada atrofia deste segmento e hipertrofia do restante do órgão perfundido. Embora existam vários modelos experimentais para estudo da regeneração hepática, poucos são focados em animais em crescimento. Além disso, os efeitos regenerativos de drogas como o tacrolimus e a insulina precisam ser pesquisados, com o objetivo de encontrar um tratamento ideal para a insuficiência hepática ou um método de estimular a regeneração do fígado após ressecções ou transplantes parciais. O objetivo do presente estudo é descrever modelos de regeneração hepática em ratos em crescimento com: 1) ausência de fluxo hepático arterial e 2) redução do fluxo portal. Adicionalmente, o estudo avalia o efeito pró-regenerativo do tacrolimus e da insulina nesses modelos descritos. MÉTODOS: cento e vinte ratos (entre 50 e 100g de peso) foram divididos em 6 grupos, de acordo com o tipo de intervenção cirúrgica: Grupo 1, incisão abdominal sem intervenção hepática; Grupo 2, hepatectomia a 70%; Grupo 3, hepatectomia a 70% + estenose de veia porta; Grupo 4, hepatectomia a 70% + ligadura da artéria hepática; Grupo 5, hepatectomia a 70% + estenose de veia porta + insulina; Grupo 6, hepatectomia a 70% + estenose de veia porta + tacrolimus. Os animais dos grupos 1 ao 4 foram subdivididos em 5 subgrupos de acordo com o momento da morte: 1, 2, 3, 5 e 10 dias após a intervenção cirúrgica. Os animais dos grupos 5 e 6 foram subdividos em 2 subgrupos de acordo com o momento da morte: 2 e 10 dias após a intervenção cirúrgica. Os lobos hepáticos remanescentes foram submetidos à análise histomorfométrica, imuno-histoquímica e molecular. RESULTADOS: Verificou-se que no grupo com hepatectomia a 70% houve recuperação do peso do fígado no terceiro dia com aumento da atividade mitótica, enquanto que no grupo com estenose portal não se observou esse fenômeno (p < 0,001). A insulina e o tacrolimus promoveram aumento do peso do fígado e do índice mitótico. A atividade mitótica foi considerada aumentada nos animais dos grupos hepatectomia, hepatectomia + ligadura da artéria, insulina e tacrolimus; e esse parâmetro estava reduzido no grupo submetido à hepatectomia + estenose portal (p < 0,001). A expressão de interleucina 6 estava presente em todos os animais, sendo significativamente maior nos grupos hepatectomia, hepatectomia + ligadura da artéria e significativamente menor no grupo hepatectomia + estenose portal. Entretanto, a administração de tacrolimus ou insulina recuperou os níveis teciduais de interleucina 6 no grupo com estenose portal. CONCLUSÕES: No presente estudo foi padronizado um modelo simples e facilmente reprodutível para estudar a regeneração hepática em ratos em crescimento com redução do fluxo arterial ou venoso para o fígado. Foi demonstrado que a administração de insulina ou tacrolimus é capaz de reverter os efeitos deletérios da estenose portal na regeneração hepática. A obstrução do fluxo arterial não afetou a capacidade regenerativa hepática
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Mode of access: Internet.
Resumo:
Classic cadherins are adhesion-activated cell signaling receptors. In particular, homophilic cadherin ligation can directly activate Rho family GTPases and phosphatidylinositol 3-kinase (PI3-kinase), signaling molecules with the capacity to support the morphogenetic effects of these adhesion molecules during development and disease. However, the molecular basis for cadherin signaling has not been elucidated, nor is its precise contribution to cadherin function yet understood. One attractive hypothesis is that cadherin-activated signaling participates in stabilizing adhesive contacts ( Yap, A. S., and Kovacs, E. M. ( 2003) J. Cell Biol. 160, 11-16). We now report that minimal mutation of the cadherin cytoplasmic tail to uncouple binding of p120-ctn ablated the ability of E-cadherin to activate Rac. This was accompanied by profound defects in the capacity of cells to establish stable adhesive contacts, defects that were rescued by sustained Rac signaling. These data provide direct evidence for a role of cadherin-activated Rac signaling in contact formation and adhesive stabilization. In contrast, cadherin-activated PI3-kinase signaling was not affected by loss of p120-ctn binding. The molecular requirements for E-cadherin to activate Rac signaling thus appear distinct from those that stimulate PI3-kinase, and we postulate that p120-ctn may play a central role in the E-cadherin-Rac signaling pathway.
Resumo:
Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulficlophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: + 133 mV (pH 6.0); + 104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxY, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.
Resumo:
Classical cadherin adhesion molecules are fundamental determinants of cell-cell recognition that function in cooperation with the actin cytoskeleton. Productive cadherin-based cell recognition is characterized by a distinct morphological process of contact zone extension, where limited initial points of adhesion are progressively expanded into broad zones of contact. We recently demonstrated that E-cadherin ligation recruits the Arp2/3 actin nucleator complex to the plasma membrane in regions where cell contacts are undergoing protrusion and extension. This suggested that Arp2/3 might generate the protrusive forces necessary for cell surfaces to extend upon one another during contact assembly. We tested this hypothesis in mammalian cells by exogenously expressing the CA region of N-WASP. This fragment, which potently inhibits Arp2/3-mediated actin assembly in vitro, also effectively reduced actin assembly at cadherin adhesive contacts. Blocking Arp2/3 activity by this strategy profoundly reduced the ability of cells to extend cadherin adhesive contacts but did not affect cell adhesiveness. These findings demonstrate that Arp2/3 activity is necessary for cells to efficiently extend and assemble cadherin-based adhesive contacts.
Resumo:
Using native chemical ligation, we synthesized a group A streptococcal. (GAS) vaccine that contained three different GAS M protein peptide epitopes in a chemically well-characterized construct in high purity. Two of the peptide epitopes represented variable amino terminal serotype determinants, and the third represented a carboxyl terminal conserved region determinant of the GAS M protein. We also synthesized a lipid core peptide (LCP) construct containing the same three peptides. Upon immunization of mice, the non-LCP construct only elicited antibody responses to all three epitopes with the use of adjuvant. The LCP construct, however, elicited excellent antibody responses to all three epitopes without the need for any additional adjuvant or carrier. We have synthesized the LCP synthetic vaccine system with good reproducibility.
Resumo:
The multiheme SoxAX proteins are notable for their unusual heme ligation (His/Cys-persulfide in the SoxA subunit) and the complexity of their EPR spectra. The diheme SoxAX protein from Starkeya novella has been expressed using Rhodobacter capsulatus as a host expression system. rSoxAX was correctly formed in the periplasm of the host and contained heme c in similar amounts as the native SoxAX. ESI-MS showed that the full length rSoxA, in spite of never having undergone catalytic turnover, existed in several forms, with the two major forms having masses of 28 687 +/- 4 and 28 718 +/- 4 Da. The latter form exceeds the expected mass of rSoxA by 31 4 Da, a mass close to that of a sulfur atom and indicating that a fraction of the recombinant protein contains a cysteine persulfide modification. EPR spectra of rSoxAX contained all four heme-dependent EPR signals (LS1a, LS1b, LS2, LS3) found in the native SoxAX proteins isolated from bacteria grown under sulfur chemolithotrophic conditions. Exposure of the recombinant SoxAX to different sulfur compounds lead to changes in the SoxA mass profile as determined by ESI while maintaining a fully oxidized SoxAX visible spectrum. Thiosulfate, the proposed SoxAX substrate, did not cause any mass changes while after exposure to dimethylsulfoxide a + 112 +/- 4 Da form of SoxA became dominant in the mass spectrum. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The use of Judas goats to locate remnant animals is a potentially powerful tool for enhancing goat-eradication efforts, which are especially important to island conservation. However, current Judas goat methodology falls short of its potential efficacy. Female Judas goats are often pregnant at the time of deployment or become impregnated in the field; pregnant females leave associated goats to give birth, causing downtime of Judas goat operations. Further, male Judas goats may inseminate remnant females. Sterilising Judas goats prior to deployment removes these inefficiencies. Here, we describe two methods (epididymectomy for males and tubal occlusion for females) that sterilise Judas goats while still maintaining sexual motivation and other behaviours associated with intact animals. These surgeries are straightforward, time efficient, and may be conducted in the field by staff with minimal training. Given the widespread and deleterious impacts of non-native herbivores to ecosystems and the importance of Judas operations in detecting animals at low densities, sterilisation and termination of pregnancy should be applied routinely in Judas goat (and possibly other species) programs to increase the efficacy of low-density control operations and eradication campaigns.
Resumo:
Background: Medical treatment of the rare interstitial ectopic pregnancy with methotrexate has been considered an alternative to surgical resection. Aim: To determine the treatment success rate with a single-dose intravenous methotrexate/folinic acid regimen and to identify predictors of treatment outcome. Methods: A 5-year audit (April 2000-August 2005) was carried out, collecting clinical imaging data and serum beta-human chorionic gonadotrophin (beta-hCG). Time taken for complete beta-hCG resolution was recorded, and a negative beta-hCG result was used as an endpoint of successful outcome. Results: Of the 13 cases, two required urgent surgery for rupture on presentation. In the remaining 11 cases, intravenous methotrexate (300 mg) was used, with oral folinic acid rescue (15 mg x 4 doses). There were no side-effects. Complete beta-hCG resolution was achieved in 10 of the 11 medically treated cases (91% success rate), requiring 21-129 days. Successful outcome was seen with initial beta-hCG level as high as 106 634 IU/L and gestation sac as large as 6 cm and a live fetus. Conclusion: The methotrexate/folinic acid regimen used as a one-dose treatment is safe and effective for unruptured interstitial pregnancy, with no side-effects and the advantage of avoiding invasive surgery. Subsequent tubal patency and reproductive function are yet to be ascertained.
Resumo:
Forced expression of HOXA1 is sufficient to stimulate oncogenic transformation of immortalized human mammary epithelial cells and subsequent tumor formation. We report here that the expression and transcriptional activity of HOXA1 are increased in mammary carcinoma cells at full confluence. This confluence-dependent expression of HOXA1 was abrogated by incubation of cells with EGTA to produce loss of intercellular contact and rescued by extracellular addition of Ca2+. Increased HOXA1 expression at full confluence was prevented by an E-cadherin function-blocking antibody and attachment of non-confluent cells to a substrate by homophilic ligation of E-cadherin increased HOXA1 expression. E-cadherin-directed signaling increased HOXA1 expression through Rac1. Increased HOXA1 expression consequent to E-cadherin-activated signaling decreased apoptotic cell death and was required for E-cadherin-dependent anchorage-independent proliferation of human mammary carcinoma cells. HOXA1 is therefore a downstream effector of E-cadherin-directed signaling required for anchorage-independent proliferation of mammary carcinoma cells.
Resumo:
Conotoxins, disulfide-rich peptides from the venom of cone snails, have created much excitement over recent years due to their potency and specificity for ion channels and their therapeutic potential. One recently identified conotoxin, MrIA, a 13-residue member of the chi-conotoxin family, inhibits the human norepinephrine transporter (NET) and has potential applications in the treatment of pain. In the current study, we show that the, beta-hairpin structure of native MrIA is retained in a synthetic cyclic version, as is biological activity at the NET. Furthermore, the cyclic version has increased resistance to trypsin digestion relative to the native peptide, an intriguing result because the cleavage site for the trypsin is not close to the cyclization site. The use of peptides as drugs is generally hampered by susceptibility to proteolysis, and so, the increase in enzymatic stability against trypsin observed in the current study may be useful in improving the therapeutic potential of MrIA. Furthermore, the structure reported here for cyclic MrIA represents a new topology among a growing number of circular disulfide-rich peptides.
Resumo:
Functional interactions between classical cadherins and the actin cytoskeleton involve diverse actin activities, including filament nucleation, cross-linking, and bundling. In this report, we explored the capacity of Ena/VASP proteins to regulate the actin cytoskeleton at cadherin-adhesive contacts. We extended the observation that Ena/vasodilator-stimulated phosphoprotein (VASP) proteins localize at cell-cell contacts to demonstrate that E-cadherin homophilic ligation is sufficient to recruit Mena to adhesion sites. Ena/VASP activity was necessary both for F-actin accumulation and assembly at cell-cell contacts. Moreover, we identified two distinct pools of Mena within individual homophilic adhesions that cells made when they adhered to cadherin-coated substrata. These Mena pools localized with Arp2/3-driven cellular protrusions as well as at the tips of cadherin-based actin bundles. Importantly, Ena/VASP activity was necessary for both modes of actin activity to be expressed. Moreover, selective depletion of Ena/VASP proteins from the tips of cadherin-based bundles perturbed the bundles without affecting the protrusive F-actin pool. We propose that Ena/VASP proteins may serve as higher order regulators of the cytoskeleton at cadherin contacts through their ability to modulate distinct modes of actin organization at those contacts.