898 resultados para TOXICIDAD POR INGESTION
Resumo:
The pragmatics of 'vegetarian' and 'carnivorous' exhibits an asymmetry that we put in evidence by analyzing a newspaper report about vegetarian dog-owners imposing a vegetarian diet on their pets. More fundamental is the problem of partonomy versus containment, for which we attempt a naive but formal analysis applied to ingestion and the food chain, an issue we derive from the same text analyzed. Our formal tools belong in commonsense modelling, a domain of artificial intelligence related to extra-linguistic knowledge and pragmatics. We first provide an interpretation of events analyzed, and express it graphically in a semantic-network related representation, and propose an alternative that we express in terms of a modal logic, avoiding the full representational power of Hayes's "ontology for liquids".
Resumo:
This study investigated the effect of a fed or fasted state on the salivary immunoglobulin A (s-IgA) response to prolonged cycling. Using a randomized, crossover design, 16 active adults (8 men and 8 women) performed 2 hr of cycling on a stationary ergometer at 65% of maximal oxygen uptake on 1 occasion after an overnight fast (FAST) and on another occasion 2 hr after consuming a 2.2-MJ high-carbohydrate meal (FED). Timed, unstimulated whole saliva samples were collected immediately before ingestion of the meal, immediately preexercise, 5 min before cessation of exercise, immediately postexercise, and 1 hr postexercise. The samples were analyzed for s-IgA concentration, osmolality, and cortisol, and saliva flow rates were determined to calculate s-IgA secretion rate. Saliva flow rate decreased by 50% during exercise (p < .05), and s-IgA concentration increased by 42% (p < .05), but s-IgA secretion rate remained unchanged. There was a 37% reduction in s-IgA:osmolality postexercise (p < .05), and salivary cortisol increased by 68% (p < .05). There was no effect of FED vs. FAST on these salivary responses. The s-IgA concentration, secretion rate, and osmolality were found to be significantly lower in women than in men throughout the exercise protocol (p < .05); however, there was no difference between genders in saliva flow rate, s-IgA:osmolality ratio, or cortisol. These data demonstrate that a fed or fasted state 2 hr before exercise does not influence resting s-IgA or the response to prolonged cycling. Furthermore, these results show lower levels of s-IgA and osmolality in women than in men at rest.
Resumo:
Samples taken in the northern North Sea with the Continuous Plankton Recorder (CPR), the Undulating Oceanographic Recorder (UOR), the Longhurst Hardy Plankton Recorder (LHPR) and by our colleagues from other participating Institutes during the Fladen Ground Experiment (FLEX 76) were used to describe the vertical distribution and population dynamics of Calanus finmarchicus (Gunnerus) and to provide estimates of the production and carbon budget of the population from 19 March to 3 June, 1976. Total production of the 19 March to 3 June, 1976. Total production of the nauplii and copepodite stages (including adults), during the exponential growth phase in May, was estimated to be in the range of 0.49 to 0.91 g C m-2 d-1 or 29.0 to 55 g dry wt m-2 (14.5 to 27.8 g C m-2) for the three successive 10 d periods in May. Two gross growth efficiencies (K 1) (20 and 34%), together with the lower value of C. finmarchicus production, were used to calculate the gross ingestion levels of algae as 2.45 and 1.44 g C m-2 d-1 (73.5 and 43.2 g C m-2 over the May period). These ingestion levels, together with the algae ingested by other zooplankton species, are greater than the estimated total phytoplankton production of 45.9 g C m-2 over the FLEX period. A number of factors are discussed which could explain the discrepancies between the production estimates. One suggestion is that the vertical distribution of the development stages of this herbivorous copepod and their diel and ontogenetic migration patterns enable it to efficiently exploit its food source. Data from the FLEX experiment indicated that the depletion of nutrients limited the size of the spring bloom, but that it was the grazing pressure exerted by C. finmarchicus which was responsible for the control and depletion of the phytoplankton in the spring of 1976 in the northern North Sea.
Resumo:
The present investigation reviews published data on the feeding rates and prey selection of Oithona similis females, Calanus finmarchicus nauplii and females in the Irminger Sea in April/May and July/August 2002. Our aim was to examine how the feeding rates and prey selection of these three copepod stages respond to concomitant changes in microplankton community composition and prey abundance. Copepods typically ingested prey overall according to its ambient concentration although significant species and stage-specific differences in prey-type ingestion and selection were apparent. Despite being of comparable weight, the ingestion rates of C. finmarchicus nauplii were always higher than those of the O. similis females. Moreover, C. finmarchicus nauplii and O. similis females fed preferentially on diatoms and ciliates respectively, whereas adult female C. finmarchicus showed limited prey selectivity. Copepod grazing impact on total and on ciliates/dinoflagellates standing stock was <0.5 and <2%, respectively. We attribute this result to a combination of low grazing rates, low copepod abundance and low microplankton biomass, all of which are indicative of the non-bloom conditions under which these experiments were conducted. The differences in copepod feeding rates and prey selection we report reflect species and stage-specific eco-physiological adaptations, which may act as important driving forces for marine ecosystem structuring and functioning.
Resumo:
Abyssal benthic foraminifera have been maintained alive for periods of several weeks under laboratory simulated deep-sea conditions of high pressure and low temperature. In separate experiments, bacterial-sized fluorescent microspheres and three species of microalgae were supplied as food particles. Subsequent light and electron microscopy showed that the algae had been ingested by several foraminiferal species. Furthermore, the fine structure of the foraminiferal cytoplasm was well-preserved which indicates, along with the ingestion of algal food, that they had remained in a viable condition during the incubation. Other observations indicate that abyssal benthic foraminifera ingest naturally occurring photosynthetic cells carried to the deep-sea bed by rapidly sedimenting aggregates. The ability to keep foraminifera originating from depths exceeding 4000 m alive in the laboratory paves the way for the experimental investigation of some important issues in deep-sea biology and palaeoceanography.
Resumo:
Antarctic krill (Euphausia superba) were sampled in contrasting habitats: a seasonally ice-covered deep ocean (Lazarev Sea), ice-free shelves at their northern range (South Georgia) and the Antarctic Peninsula (Bransfield Strait), and shelf and oceanic sites in the Scotia Sea. Across 92 stations, representing a year-round average, the food volume in krill stomachs comprised 71 +/- 29% algae, 17 +/- 21% protozoans, and 12 +/- 25% metazoans. Fatty acid trophic markers showed that copepods were consistently part of krill diet, not a switch food. In open waters, both diatom and copepod consumption increased with phytoplankton abundance. Under sea ice, ingestion of diatoms became rare, whereas feeding on copepods remained constant. During winter, larvae contained high but variable proportions of diatom markers, whereas in postlarvae the role of copepods increased with krill body length. Overwintering differed according to habitat. Krill from South Georgia had lower lipid stores than those from the Bransfield Strait or Lazarev Sea. Feeding effort was much reduced in Lazarev Sea krill, whereas most individuals from the Bransfield Strait and South Georgia contained phytoplankton and seabed detritus in their stomachs. Their retention of essential body reserves indicates that krill experienced most winter hardship in the Lazarev Sea, followed by South Georgia and then Bransfield Strait. This was reflected in the delayed development from juveniles to adults in the Lazarev Sea. Circumpolar comparisons of length frequencies suggest that krill growth conditions are more favorable in the southwest Atlantic than in the Lazarev Sea or off East Antarctica because of longer phytoplankton bloom periods and rewarding access to benthic food.
Resumo:
Meroplankton are seasonally important contributors to the zooplankton, particularly at inshore sites, yet their feeding ecology is poorly known relative to holoplankton. While several studies have measured feeding in decapod larvae, few studies have examined the feeding rates of decapod larvae on natural prey assemblages throughout the reproductive season. We conducted 8 feeding experiments with Necora puber, Liocarcinus spp. and Upogebia spp. zoea larvae collected from the L4 monitoring site off Plymouth (50°15.00′N, 4°13.02′W) during spring–summer 2009 and 2010. This period spanned moderate-to-high food availability (0.5–1.6 µg chl-a L−1), but a great range in food composition with small cells <20 µm dominating in 2010. Daily rations averaged 17, 60 and 22 % of body C for the 3 respective decapod species. Clearance rates differed according to prey type, and all 3 decapod genera showed evidence of selection of dinoflagellates. Importantly, small cells including nano- and pico-plankton were ingested, this being demonstrated independently by flow cytometric analysis of the feeding experiments and molecular analysis. PCR-based analysis of the haptophyte portion of the diet revealed ingestion of Isochrysis galbana by decapod larvae in the bottle incubations and Isochrysis galbana and Phaeocystis globosa by decapod larvae collected directly from the field. This study has shown that pico- and nano-sized plankton form an important supplement to the diverse and variable diet of decapod larvae.
Feeding selectivity of bivalve larvae on natural plankton assemblages in the Western English Channel
Resumo:
Meroplankton, including bivalve larvae, are an important and yet understudied component of coastal marine food webs. Understanding the baseline of meroplankton ecology is imperative to establish and predict their sensitivity to local and global marine stressors. Over an annual cycle (October 2009–September 2010), bivalve larvae were collected from the Western Channel Observatory time series station L4 (50°15.00′N, 4°13.02′W). The morphologically similar larvae were identified by analysis of the 18S nuclear small subunit ribosomal RNA gene, and a series of incubation experiments were conducted to determine larval ingestion rates on natural plankton assemblages. Complementary gut content analysis was performed using a PCR-based method for detecting prey DNA both from field-collected larvae and those from the feeding experiments. Molecular identification of bivalve larvae showed the community composition to change over the course of the sampling period with domination by Phaxas in winter and higher diversity in autumn. The larvae selected for nanoeukaryotes (2–20 µm) including coccolithophores (<20 µm) which together comprised >75 % of the bivalve larvae diet. Additionally, a small percentage of carbon ingested originated from heterotrophic ciliates (<30 µm). The molecular analysis of bivalve larvae gut content provided increased resolution of identification of prey consumed and demonstrated that the composition of prey consumed established through bottle incubations conferred with that established from in situ larvae. Despite changes in bivalve larvae community structure, clearance rates of each prey type did not change significantly over the course of the experiment, suggesting different bivalve larvae species may consume similar prey.
Resumo:
Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.
Resumo:
Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed.
Resumo:
El uso de agroquímicos en Argentina se ha fortalecido junto con la expansión agrícola. El objetivo de este trabajo es la elaboración de una metodología para calcular el impacto ambiental que los pesticidas causan en el medio ambiente teniendo en cuenta los siguientes factores: "ecotoxicología": categoría toxicológica, toxicidad en abejas, aves y peces; "Toxicidad humana": carcinogenicidad, neurotoxicidad, alteraciones endocrinas, genotoxicidad y capacidad irritativa; "Comportamiento ambiental": la persistencia en el agua / sedimento, persistencia en el suelo y bioconcentración. Estos factores fueron clasificados como bajo, medio, alto o muy alto, de acuerdo con su nivel de toxicidad. Los resultados indican que los plaguicidas más tóxicos son los insecticidas. La mayoría de los pesticidas utilizados son la toxicidad media (43,75%), seguido de baja y alta toxicidad (21,88%) y, los de muy alta toxicidad (12,5%). La metodología propuesta podría ser utilizada como una herramienta de monitoreo, gestión o educación ambiental.
Resumo:
Background: Interactions between Mycobacterium avium subsp. paratuberculosis (Map) and free-living protozoa in water are likely to occur in nature. The potential impact of ingestion of Map by two naturally occurring Acanthamoeba spp. on this pathogen's survival and chlorine resistance was investigated. Results: Between 4.6 and 9.1% of spiked populations of three Map strains (NCTC 8578, B2 and ATCC 19698), which had been added at a multiplicity of infection of 10: 1, were ingested by Acanthamoeba castellanii CCAP 1501/1B and A. polyphaga CCAP 1501/3B during co-culture for 3 h at 25 C. Map cells were observed to be present within the vacuoles of the amoebae by acid-fast staining. During extended co-culture of Map NCTC 8578 at 25 degrees C for 24 d with both A. castellanii and A. polyphaga Map numbers did not change significantly during the first 7 days of incubation, however a 1-1.5 log(10) increase in Map numbers was observed between days 7 and 24 within both Acanthamoeba spp. Ingested Map cells were shown to be more resistant to chlorine inactivation than free Map. Exposure to 2 mu g/ml chlorine for 30 min resulted in a log(10) reduction of 0.94 in ingested Map but a log(10) reduction of 1.73 in free Map (p <0.001). Conclusion: This study demonstrated that ingestion of Map by and survival and multiplication of Map within Acanthamoeba spp. is possible, and that Map cells ingested by amoebae are more resistant to inactivation by chlorine than free Map cells. These findings have implications with respect to the efficacy of chlorination applied to Map infected surface waters.
Resumo:
Ascorbic acid (AA) is thought to be an important antioxidant in the respiratory tract, whose regulation is yet to be fully characterized. We investigated whether AA in respiratory tract lining fluids (RTLFs) can be augmented by oral supplementation with AA. Plasma, nasal lavage fluids (NLFs), induced sputum (IS), and saliva were analyzed for AA immediately before and 2 h after ingestion of 2 g of AA in 13 healthy subjects. Concentrations of AA (median and range) were 52.5 (16.0-88.5), 2.4 (0.18-4.66), 2.4 (0.18-6.00), and 0.55 (0.18-18.90) micromol/l, respectively. Two hours after ingestion of AA, plasma AA increased 2-fold (p = .004), NLF AA increased 3-fold (p = .039), but IS and saliva AA did not increase. As AA concentrations in saliva and tracheobronchial secretions were low compared with other common extracellular components (such as urate), we evaluated the fate of AA in these fluids. Addition of AA to freshly obtained saliva or IS resulted in rapid depletion, which could be largely prevented or reversed by sodium azide or dithiothreitol. These findings suggest that oxidant-producing systems in saliva and airway secretions, such as heme peroxidases and other oxidizing substances, rapidly consume AA. Whereas oral supplementation resulted in detectable increases of AA in NLFs, its levels in tracheobronchial lining fluid, as measured by IS, were unaffected and remained relatively low, suggesting that AA may play a less significant antioxidant role in this compartment as compared with most other extracellular compartments.
Resumo:
Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide [GIP]) is an important incretin hormone secreted by endocrine K-cells in response to nutrient ingestion. In this study, we investigated the effects of chemical ablation of GIP receptor (GIP-R) action on aspects of obesity-related diabetes using a stable and specific GIP-R antagonist, (Pro3)GIP. Young adult ob/ob mice received once-daily intraperitoneal injections of saline vehicle or (Pro3)GIP over an 11-day period. Nonfasting plasma glucose levels and the overall glycemic excursion (area under the curve) to a glucose load were significantly reduced (1.6-fold; P <0.05) in (Pro3)GIP-treated mice compared with controls. GIP-R ablation also significantly lowered overall plasma glucose (1.4-fold; P <0.05) and insulin (1.5-fold; P <0.05) responses to feeding. These changes were associated with significantly enhanced (1.6-fold; P <0.05) insulin sensitivity in the (Pro3)GIP-treated group. Daily injection of (Pro3)GIP reduced pancreatic insulin content (1.3-fold; P <0.05) and partially corrected the obesity-related islet hypertrophy and ß-cell hyperplasia of ob/ob mice. These comprehensive beneficial effects of (Pro3)GIP were reversed 9 days after cessation of treatment and were independent of food intake and body weight, which were unchanged. These studies highlight a role for GIP in obesity-related glucose intolerance and emphasize the potential of specific GIP-R antagonists as a new class of drugs for the alleviation of insulin resistance and treatment of type 2 diabetes.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of