895 resultados para TO-HEAD RATIO
Resumo:
This paper introduces a State Space approach to explain the dynamics of rent growth, expected returns and Price-Rent ratio in housing markets. According to the present value model, movements in price to rent ratio should be matched by movements in expected returns and expected rent growth. The state space framework assume that both variables follow an autoregression process of order one. The model is applied to the US and UK housing market, which yields series of the latent variables given the behaviour of the Price-Rent ratio. Resampling techniques and bootstrapped likelihood ratios show that expected returns tend to be highly persistent compared to rent growth. The filtered expected returns is considered in a simple predictability of excess returns model with high statistical predictability evidence for the UK. Overall, it is found that the present value model tends to have strong statistical predictability in the UK housing markets.
Resumo:
Traffic forecasts provide essential input for the appraisal of transport investment projects. However, according to recent empirical evidence, long-term predictions are subject to high levels of uncertainty. This paper quantifies uncertainty in traffic forecasts for the tolled motorway network in Spain. Uncertainty is quantified in the form of a confidence interval for the traffic forecast that includes both model uncertainty and input uncertainty. We apply a stochastic simulation process based on bootstrapping techniques. Furthermore, the paper proposes a new methodology to account for capacity constraints in long-term traffic forecasts. Specifically, we suggest a dynamic model in which the speed of adjustment is related to the ratio between the actual traffic flow and the maximum capacity of the motorway. This methodology is applied to a specific public policy that consists of suppressing the toll on a certain motorway section before the concession expires.
Resumo:
KNOTS are usually categorized in terms of topological properties that are invariant under changes in a knot's spatial configuration(1-4). Here we approach knot identification from a different angle, by considering the properties of particular geometrical forms which we define as 'ideal'. For a knot with a given topology and assembled from a tube of uniform diameter, the ideal form is the geometrical configuration having the highest ratio of volume to surface area. Practically, this is equivalent to determining the shortest piece of tube that can be closed to form the knot. Because the notion of an ideal form is independent of absolute spatial scale, the length-to-diameter ratio of a tube providing an ideal representation is constant, irrespective of the tube's actual dimensions. We report the results of computer simulations which show that these ideal representations of knots have surprisingly simple geometrical properties. In particular, there is a simple linear relationship between the length-to-diameter ratio and the crossing number-the number of intersections in a two-dimensional projection of the knot averaged over all directions. We have also found that the average shape of knotted polymeric chains in thermal equilibrium is closely related to the ideal representation of the corresponding knot type. Our observations provide a link between ideal geometrical objects and the behaviour of seemingly disordered systems, and allow the prediction of properties of knotted polymers such as their electrophoretic mobility(5).
Resumo:
BACKGROUND/AIMS: Prospective studies on factors associated with adverse kidney outcomes in European general populations are scant. Also, few studies consider the potential confounding effect of baseline kidney function. METHODS: We used baseline (2003-2006) and 5-year follow-up data of adults from the general population to evaluate the effect of baseline kidney function and proteinuria on the association of clinical, biological (e.g. uric acid, homocysteine, cytokines), and socioeconomic factors with change in kidney function, rapid decline in kidney function, and incidence of chronic kidney disease (CKD). Estimated glomerular filtration rate (eGFR) and urinary albuminuria-to-creatinine ratio (UACR) were collected. Kidney outcomes were modeled using multivariable regressions. RESULTS: A total of 4,441 subjects were included in the analysis. Among participants without CKD at baseline, 11.4% presented rapid decline in eGFR and/or incident CKD. After adjustment for baseline eGFR and log UACR, only age (Odds Ratio; 1.25 [95%CI 1.18-1.33]), diabetes (OR 1.48 [1.03-2.13]), education (OR middle vs. high 1.51 [1.08-2.11]) and log ultrasensitive CRP (OR 1.16 [1.05-1.22]) were associated with rapid decline in eGFR or incident CKD. Baseline log UACR (OR 1.18 [1.06-1.32]) but not eGFR was associated with rapid decline in eGFR and/or incident CKD. CONCLUSION: In addition to age and diabetes, education and CRP levels are associated with adverse kidney outcomes independently of baseline kidney function.
Resumo:
Obesity is a major risk factor for elevated blood pressure in children. For instance, in a school-based study of 5207 children aged 10-12 years, the prevalence of hypertension, which is sustained elevated blood pressure over several visits, was 1.5%, 3.9% and 17.5% in normal weight, overweight and obese children, respectively. High body mass index (BMI) is commonly used to define overweight and obesity. However, because BMI is merely a proxy for adiposity, there is a longstanding debate about its performance to predict elevated blood pressure (or any other health conditions associated with adiposity) and whether other adiposity indicators, such as waist circumference, waist-to-hip ratio or hip circumference, should not be preferred... In this study, 7.4% of boys and 6.4% of girls had elevated blood pressure. The adiposity indicators were highly correlated to each other, apart from weight, waist-to-hip ratio and skinfold thickness z-scores. All indicators were associated with blood pressure. The ability to identify children with elevated blood pressure, assessed by the area under the receiver operating curve (AUC) statistic, was superior for BMI, body adiposity index and waist-to-height ratio z-scores compared with other indicators. BMI z-scores had a slightly higher AUC than other indicators. The authors concluded that BMIz-scores could be a better predictor of elevated blood pressure in children than other adiposity indicators.
Resumo:
Image quality in magnetic resonance imaging (MRI) is considerably affected by motion. Therefore, motion is one of the most common sources of artifacts in contemporary cardiovascular MRI. Such artifacts in turn may easily lead to misinterpretations in the images and a subsequent loss in diagnostic quality. Hence, there is considerable research interest in strategies that help to overcome these limitations at minimal cost in time, spatial resolution, temporal resolution, and signal-to-noise ratio. This review summarizes and discusses the three principal sources of motion: the beating heart, the breathing lungs, and bulk patient movement. This is followed by a comprehensive overview of commonly used compensation strategies for these different types of motion. Finally, a summary and an outlook are provided.
Resumo:
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.
Resumo:
Thirty species of nematodes recovered from Piciformes hosts are reported. Procyrnea anterovulvata n. sp. from Chelidoptera tenebrosa brasiliensis is described and compared to P. colaptes and P. pileata. The considered morphometric parameters are mainly related to the ratio between length of the body/distance of the vulva to the anterior end. It is approximately 1:0.5 in P. colaptes and P. pileata compared to 1:0.1 in the new species. The male of Synhimantus (Dispharynx) crassissima is described for the first time. Thelazia (Thelaziella) spizaeti is revalidated and new records are reported for some species.
Resumo:
BACKGROUND: The purpose of this prospective study was to perform a head-to-head comparison of the two methods most frequently used for evaluation of carotid plaque characteristics: Multi-detector Computed Tomography Angiography (MDCTA) and black-blood 3 T-cardiovascular magnetic resonance (bb-CMR) with respect to their ability to identify symptomatic carotid plaques. METHODS: 22 stroke unit patients with unilateral symptomatic carotid disease and >50% stenosis by duplex ultrasound underwent MDCTA and bb-CMR (TOF, pre- and post-contrast fsT1w-, and fsT2w- sequences) within 15 days of symptom onset. Both symptomatic and contralateral asymptomatic sides were evaluated. By bb-CMR, plaque morphology, composition and prevalence of complicated AHA type VI lesions (AHA-LT6) were evaluated. By MDCTA, plaque type (non-calcified, mixed, calcified), plaque density in HU and presence of ulceration and/or thrombus were evaluated. Sensitivity (SE), specificity (SP), positive and negative predictive value (PPV, NPV) were calculated using a 2-by-2-table. RESULTS: To distinguish between symptomatic and asymptomatic plaques AHA-LT6 was the best CMR variable and presence / absence of plaque ulceration was the best CT variable, resulting in a SE, SP, PPV and NPV of 80%, 80%, 80% and 80% for AHA-LT6 as assessed by bb-CMR and 40%, 95%, 89% and 61% for plaque ulceration as assessed by MDCTA. The combined SE, SP, PPV and NPV of bb-CMR and MDCTA was 85%, 75%, 77% and 83%, respectively. CONCLUSIONS: Bb-CMR is superior to MDCTA at identifying symptomatic carotid plaques, while MDCTA offers high specificity at the cost of low sensitivity. Results were only slightly improved over bb-CMR alone when combining both techniques.
Resumo:
OBJECTIVE: The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. DESIGN: A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). RESULTS: There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. CONCLUSIONS: The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion activities may be a key component of NEAT. However, its contribution may depend on the total duration of the upper limb movements during the course of the day.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
This paper analyzes the behavior of the tax revenue to output ratio over the business cycle. In order to replicate the empirical evidence, we develop a simple model combining the standard Ak growth model with the tax evasion phenomenon. When individuals conceal part of their true income from the tax authority, they face the risk of being audited and hence of paying the corresponding fine. Under the empirically plausible assumptions that the intertemporal elasticity of substitution exhibits a sufficiently small value and that productivity shocks are serially correlated, we show that the elasticity of government revenue with respect to output is larger than one, which agrees with the empirical evidence. This result holds even if the tax system displays flat tax rates. We extend the previous setup to generate larger fiscal deficits when the economy experiences a recession.
Resumo:
The objective was to evaluate the effect of ZnO-Functionalised-Sepiolite (ZnO-Sepiolite) to fulfil Zn requirements and health status of weaning piglets. Pre-starter Basal Diet (BD, corn– soybean based, from weaning till 14 days on trial) was calculated to provide 27 mg Zn/kg feed from raw materials and had no added ZnO and no antibiotics or organic acids. Treatments during pre-starter period were: 1) BD+90% of NRC Zn requirements completed with ZnO (ZnO90); 2) BD+90% of NRC Zn requirements completed with ZnO-Sepiolite (ZnOS90); 3) BD+3000 mg ZnO/kg of diet (ZnO3000); 4) BD+150 mg added Zn/kg diet from ZnO-Sepiolite (ZnOS150). The starter feed (corn–soybean based, from 14 till 31 days on trial) was common for all piglets, and met 90% NRC Zn requirements by adding ZnO. Diarrhea affected more than 50% of the animals of ZnO90, ZnOS90 and ZnOS150, and 33% of the ZnO3000 animals. Animals from ZnOS90 tended (Pb0.10) to improve Gain to Feed ratio (G:F) compared to animals from ZnO90 (0.830 kg/kg vs. 0.811 kg/kg for G:F). Performance of animals from ZnO3000 was not significantly different from the other treatments, and was numerically similar to animals from ZnOS90. The inclusion of ZnO at 3000 mg/kg of feed in the pre-starter period numerically decreased P in serum at the end of this period, with no effect on Ca level; normal levels were restored after 2 weeks of feeding the same levels of Zn than other animals. Animals fed ZnOSepiolite diets had numerically higher serum Ca than ZnO90 and ZnO3000 at 12 days and higher than ZnO90 at 28 days. Serum Zn levels were significantly higher for ZnO3000 than the other treatments.
Resumo:
The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.