507 resultados para THREADING DISLOCATION
The compressive creep and load relaxation properties of a series of high aluminium zinc-based alloys
Resumo:
A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.
Resumo:
The compressive creep behaviour of six sand cast zinc-rich alloys: No3 and No5, corresponding to BS 1004A and BS 1004B, respectively, alloy No2, ILZRO,.16 and two newer alloys ACuZinc5 and ACuZinc10 was investigated. The total creep contraction of the alloys was found to be well correlated using an empirical equation. On the basis of this equation, a parametrical relationship was derived which allowed the total creep contraction to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of compressive creep of the alloys could be made under different testing conditions. The primary creep and secondary creep rates were found for the alloys at different temperatures and stresses. Generally, the primary creep contraction was found to increase with copper content, whereas secondary creep rates decreased in the order No3, ACuZinc10, ACuZinc5 and No2. ILZRO.16 was tested only at the highest stress and two higher temperatures. The results showed that ILZRO.16 had higher creep resistance than all the other alloys. Thus, based on the above empirical equation, alloy No2 was found to have a substantially better total creep resistance than alloys No3 and No5, and slightly better than ACuZinc5 and ACuZinc10 for strains up to 1%. Both ACuZinc alloys had higher creep strength than commercial alloys No3 and No5. Alloy No5 had much higher creep resistance than alloy No3 under all conditions. The superior creep resistance of alloy No2 was considered to be due to the presence of small precipitates of -phase in the zinc matrix and a regular eutectic morphology. The stress exponents and activation energies for creep under different testing conditions were found to be consistent with some established creep-controlling mechanisms; i.e. dislocation climb for alloy No3, dislocation climb over second phase particles for alloys No5, No2, ACuZinc10, controlled by lattice diffusion in the zinc-rich phase. The lower creep resistance of alloy No3 was mainly due to the lower creep strength of copper-free primary particles having greater volume than eutectic in the microstructure. Alloys No5, ACuZinc5 and ACuZinc10 showed much better creep resistance than alloy No3, based on the precipitation-hardening due to the presence of small -phase precipitates. The primary dendrites in both ACuZinc alloys however were not of much benefit in improving the creep resistance of the alloys.
Resumo:
This work focuses on translated political speeches made by Canadas prime minister during times of national crises. Delivered orally in both English and French, this translation-based political discourse is examined in a tripartite manner, offering the reader contextualisation of the corpus researched; description of the translation shifts encountered; and interpretation of the discourse varies greatly depending on the era observed. Since the latter half of the 20th century, for instance, different text types have been assigned to different categories of translators. As for translative shifts revealed in the corpus, they have been categorised as either paratextual or textual divergences. Paratextual differences indicate that the Canadian prime ministers national statements in English and French do not necessarily seek to portray symmetry between what is presented in each language. Each version of a national speech thus retains a relative degree of visual autonomy. In sum, accumulated instances of paratextual divergence suggest an identifiable paratextual strategy, whereby translation contributes to the illusion that there is only one federal language: the readers. The deployment of this paratextual strategy obscures the fact that such federal expression occurs in two official languages. The illusion of monolingualism generates two different world views one for each linguistic community. Similarly, another strategy is discerned in the analysis of translative textual shifts a textual strategy useful in highlighting some of the power struggles inherent in translated federal expression. Textual interpretation of data identifies four federal translation tendencies: legitimisation and characterisation of linguistic communities; dislocation of the speech-event; neutralisation of (linguistic) territory; and valorisation of federalism.
Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires
Resumo:
The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.
Resumo:
Tensile tests were carried out using specimens of 2009 aluminium alloy reinforced by either SiC whiskers or particles. The size distributions of the whiskers and particles in the matrix were obtained by image analysis. It was found that failure was a result of uniform void nucleation and coalescence in the as fabricated composites, or a result of fast crack propagation initiated by a flaw developed at clusters of SiC in the aged or stretched and aged composites. The strengths of the as fabricated composites were estimated based on the results of image analysis using continuum mechanics and dislocation theories. The estimation indicated that the tensile strengths are largely contributed to by composite strengthening, supplemented by residual dislocation strengthening and work hardening. Owing to the flaw controlled failure, the tensile strengths of the aged or stretched and aged composites were independent of aging time, aging temperature, and the amount of stretching. The elastic moduli of the composites were estimated using the Halpin-Tsai model and a good correlation was found between the measured and estimated moduli. © 1996 The Institute of Materials.
Resumo:
Static mechanical properties of 2124 Al/SiCp MMC have been measured as a function of solution temperature and time. An optimum solution treatment has been established which produces significant improvements in static mechanical properties and fatigue crack growth resistance over conventional solution treatments. Increasing the solution treatment parameters up to the optimum values improves the mechanical properties because of intermetallic dissolution, improved solute and GPB zone strengthening and increased matrix dislocation density. Increasing the solution treatment parameters beyond the optimum values results in a rapid reduction in mechanical properties due to the formation of gas porosity and surface blisters. The optimum solution treatment improves tensile properties in the transverse orientation to a greater extent than in the longitudinal orientation and this results in reduced anisotropy. © 1996 Elsevier Science Limited.
Resumo:
A study was made of notch effects on the cleavage fracture of polycrystalline zinc. It was seen that the nominal fracture stress of SENB specimens was independent of notch angle. The maximum tensile stress below the notch at fracture in SENB specimens was shown to be different from the tensile stress at fracture in tensile testpieces over a temperature range from −196 to −17°C. The notch root strain at fracture was found to be the same as the uniaxial tensile fracture strain over this temperature interval. These results were interpreted as showing the cleavage fracture of polycrystalline zinc to be shear-stress or initiation controlled, as predicted by Stroh's dislocation model of cleavage.
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.
Resumo:
Nanostructured Cu/304 stainless steel (SS) multilayers were prepared by magnetron sputtering. 304SS has a face-centered-cubic (fcc) structure in bulk. However, in the Cu/304SS multilayers, the 304SS layers exhibit the fcc structure for layer thickness of =5 nm in epitaxy with the neighboring fcc Cu. For 304SS layer thickness larger than 5 nm, body-centered-cubic (bcc) 304SS grains grow on top of the initial 5 nm fcc SS with the Kurdjumov-Sachs orientation relationship between bcc and fcc SS grains. The maximum hardness of Cu/304SS multilayers is about 5.5 GPa (factor of two enhancement compared to rule-of-mixtures hardness) at a layer thickness of 5 nm. Below 5 nm, hardness decreases with decreasing layer thickness. The peak hardness of fcc/fcc Cu/304SS multilayer is greater than that of Cu/Ni, even though the lattice-parameter mismatch between Cu and Ni is five times greater than that between Cu and 304SS. This result may primarily be attributed to the higher interface barrier stress for single-dislocation transmission across the {111} twinned interfaces in Cu/304SS as compared to the {100} interfaces in Cu/Ni.
Resumo:
We have used a recently developed x-ray structural microscopy technique to make nondestructive, submicron-resolution measurements of the deformation microstructure below a 100mN maximum load Berkovich nanoindent in single crystal Cu. Direct observations of plastic deformation under the indent were obtained using a ~0.5 µm polychromatic microbeam and diffracted beam depth profiling to make micron-resolution spatially-resolved x-ray Laue diffraction measurements. The local lattice rotations underneath the nanoindent were found to be heterogeneous in nature as revealed by geometrically necessary dislocation (GND) densities determined for positions along lines beneath a flat indent face and under the sharp Berkovich indent blade edges. Measurements of the local rotation-axes and misorientation-angles along these lines are discussed in terms of crystallographic slip systems.
Resumo:
THE YOUTH MOVEMENT NASHI (OURS) WAS FOUNDED IN THE SPRING of 2005 against the backdrop of Ukraine’s ‘Orange Revolution’. Its aim was to stabilise Russia’s political system and take back the streets from opposition demonstrators. Personally loyal to Putin and taking its ideological orientation from Surkov’s concept of ‘sovereign democracy’, Nashi has sought to turn the tide on ‘defeatism’ and develop Russian youth into a patriotic new elite that ‘believes in the future of Russia’ (p. 15). Combining a wealth of empirical detail and the application of insights from discourse theory, Ivo Mijnssen analyses the organisation’s development between 2005 and 2012. His analysis focuses on three key moments—the organisation’s foundation, the apogee of its mobilisation around the Bronze Soldier dispute with Estonia, and the 2010 Seliger youth camp—to help understand Nashi’s organisation, purpose and ideational outlook as well as the limitations and challenges it faces. As such,the book is insightful both for those with an interest in post-Soviet Russian youth culture, and for scholars seeking a rounded understanding of the Kremlin’s initiatives to return a sense of identity and purpose to Russian national life.The first chapter, ‘Background and Context’, outlines the conceptual toolkit provided by Ernesto Laclau and Chantal Mouffe to help make sense of developments on the terrain of identity politics. In their terms, since the collapse of the Soviet Union, Russia has experienced acute dislocation of its identity. With the tangible loss of great power status, Russian realities have become unfixed from a discourse enabling national life to be constructed, albeit inherently contingently, as meaningful. The lack of a Gramscian hegemonic discourse to provide a unifying national idea was securitised as an existential threat demanding special measures. Accordingly, the identification of those who are ‘notUs’ has been a recurrent theme of Nashi’s discourse and activity. With the victory in World War II held up as a foundational moment, a constitutive other is found in the notion of ‘unusual fascists’. This notion includes not just neo-Nazis, but reflects a chain of equivalence that expands to include a range of perceived enemies of Putin’s consolidation project such as oligarchs and pro-Western liberals.The empirical background is provided by the second chapter, ‘Russia’s Youth, the Orange Revolution, and Nashi’, which traces the emergence of Nashi amid the climate of political instability of 2004 and 2005. A particularly note-worthy aspect of Mijnssen’s work is the inclusion of citations from his interviews with Nashicommissars; the youth movement’s cadres. Although relatively few in number, such insider conversations provide insight into the ethos of Nashi’s organisation and the outlook of those who have pledged their involvement. Besides the discussion of Nashi’s manifesto, the reader thus gains insight into the motivations of some participants and behind-the-scenes details of Nashi’s activities in response to the perceived threat of anti-government protests. The third chapter, ‘Nashi’s Bronze Soldier’, charts Nashi’s role in elevating the removal of a World War II monument from downtown Tallinn into an international dispute over the interpretation of history. The events subsequent to this securitisation of memory are charted in detail, concluding that Nashi’s activities were ultimately unsuccessful as their demands received little official support.The fourth chapter, ‘Seliger: The Foundry of Modernisation’, presents a distinctive feature of Mijnssen’s study, namely his ethnographic account as a participant observer in the Youth International Forum at Seliger. In the early years of the camp (2005–2007), Russian participants received extensive training, including master classes in ‘methods of forestalling mass unrest’ (p. 131), and the camp served to foster a sense of group identity and purpose among activists. After 2009 the event was no longer officially run as a Nashi camp, and its role became that of a forum for the exchange of ideas about innovation, although camp spirit remained a central feature. In 2010 the camp welcomed international attendees for the first time. As one of about 700 international participants in that year the author provides a fascinating account based on fieldwork diaries.Despite the polemical nature of the topic, Mijnssen’s analysis remains even-handed, exemplified in his balanced assessment of the Seliger experience. While he details the frustrations and disappointments of the international participants with regard to the unaccustomed strict camp discipline, organisational and communication failures, and the controlled format of many discussions,he does not neglect to note the camp’s successes in generating a gratifying collective dynamic between the participants, even among the international attendees who spent only a week there.In addition to the useful bibliography, the book is back-ended by two appendices, which provide the reader with important Russian-language primary source materials. The first is Nashi’s ‘Unusual Fascism’ (Neobyknovennyi fashizm) brochure, and the second is the booklet entitled ‘Some Uncomfortable Questions to the Russian Authorities’ (Neskol’ko neudobnykh voprosov rossiiskoivlasti) which was provided to the Seliger 2010 instructors to guide them in responding to probing questions from foreign participants. Given that these are not readily publicly available even now, they constitute a useful resource from the historical perspective.
Resumo:
Environmental consequences of international trade are quite relevant for climate change policy. Apparent decoupling of GHG emission and GDP growth, observed in several European countries, is partly due to the increasing dislocation of manufacturing industries from the developed world to emerging economies. Consequently, decoupling is coupled with increasing GHG emission embodied in imported products from these nations. The article scrutinises the GHG emission embedded in Hungarian import of Chinese products. It argues that a stagnating GHG emission observed in Hungary is intertwined with hidden GHG export to China that takes place through trading of goods. Objective evaluation of compliance status with Kyoto targets would require a consumption-based accounting of GHG emissions rather than a production-based one, unless we accept facing a BIG problem at global level.
Resumo:
Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^
Resumo:
The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.
Resumo:
Firefly Curios and Sundry Lights contains 33 poems and 55 pages, mostly free verse lyric narratives issuing from various geographic, emotional, and temporal landscapes. The book is divided into four sections which might roughly be titled: "before," examining themes of childhood and death: "on-the-road," relaying the compulsion to travel, "odd-and- ends-limbo," including pieces which have no context within the time line; and "in-one- place-for-now," reflecting modes of communication, ordering, and longing. Other concerns include speculations about existence, observations of nature, and the importance of science as a means of apprehending the world. The work reveals a belief in the interconnectedness of mind and matter, combines seriousness and humor, and displays a sonic sensibility. These poems of solitude and observation are themselves vehicles, their motion a means of dislocation in order to find the self. Firefly Curios and Sundry Lights is smaller than a bread box and you can dance to it.