997 resultados para Suspended particulate matter concentration
Resumo:
Results of multiyear investigation of distribution and composition of suspended matter in waters off the northwest coast of Africa are presented. Large-scale circulation, upwelling, river runoff, and aeolian deposition affect distribution and evolution of biochemical composition of particulate matter. Concentrations of organic carbon, nitrogen, chlorophyll, phytoplankton and trace metals in the particulate matter are determined. Ratios of these components exhibit seasonal variations.
Resumo:
A study was made of isotopic composition of carbon in lipids found in three samples of separate particulates and in eight bottom sediment samples collected in a from the Simushir Island towards the open Pacific Ocean. Average d13C of lipids from particulates was 2.3 per mil lower than one of sediments. Humic acids from sediments are the most isotopically heavy fraction (d13C = -21.2 per mil). Isotopic composition of carbon in lipids depended on their total content in samples and on composition of sediments. Formation of isotopically heavy lipids in the surface layer of sediments may be associated with biogeochemical resynthesis of humic acids.
Resumo:
An evaluation of the concentration levels of Particulate Matter (PM) was carried out in Madrid (Spain) by introducing the emissions from road dust resuspension. Road dust resuspension emission factors (EF) for different types of vehicles were calculated from EPA-AP42, a global resuspension factor of 0.097 g veh−1km−1 as described in Amato et al. (2010) and a rain-dependent correction factor. With these resuspension EFs, a simulation at street canyon level was performed with the OSPM model without rainfall. Subsequently, a simulation using the CMAQ model was implemented adding resuspension emissions affected by the rain. These data were compared with monitored data obtained from air quality stations. OSPM model simulations with resuspension EFs but without the effect of rainfall improve the PM estimates in about 20gm−3μ compared to the simulation with default EFs. Total emissions were calculated by adding the emissions estimated with resuspension EFs to the default PM emissions to be used by CMAQ. For the study in the Madrid Area, resuspension emissions are approximately of the same order of magnitude as inventoried emissions. On a monthly scale, rain effects are negligible for resuspension emissions due to the dry weather conditions of Spain. With the exception of April and May, the decrease in resuspension emissions is not >3%. The predicted PM10 concentration increases up to 9μ gm−3 on annual average for each station compared to the same scenario without resuspension. However, in both cases, PM 10 estimates with resuspension are still underestimating observations. It should be noted that although that accounting for resuspension improves the quality of model predictions, other PM sources (e.g., Saharan dust) were not considered in this study.