958 resultados para Superconducting transition temperature
Resumo:
Novel GeS2-Ga2S3-AgCl chalcohalide glasses had been prepared by melt-quenching technique, and the glass-forming region was determined by XRD, which indicated that the maximum of dissolvable AgCl was up to 65 mol%. Thermal and optical properties of the glasses were studied by differential scanning calorimetry (DSC) and Visible-IR transmission, which showed that most of GeS2-Ga2S3-AgCl glasses had strong glass-forming ability and broad region of transmission (about 0.45-12.5 mu m). With the addition of AgCl, the glass transition temperature, Tg decreases distinctly, and the short-wavelength cut-off edge (lambda(vis)) of the glasses also shifts to the long wavelength gradually. However, the glass-forming ability of the glass has a complicated evolutional trend depended on the compositional change. In addition, the values of the Vickers microhardness, H (v) , which decrease with the addition of AgCl, are high enough for the practical applications. These excellent properties of GeS2-Ga2S3-AgCl glasses make them potentially applied in the optoelectronic field, such as all-optical switch, etc.
Stability against crystallization and spectroscopic properties of Tm3+ doped fluorophosphate glasses
Resumo:
Fluorophosphate glasses with various content of Al(PO3)(3) were prepared. With the increment of Al(PO3)(3) content, density decreases while refractive index increases, and transition temperature, crystallization peak temperature and melt temperature increase which were suggested by differential scanning calorimetry. These glasses exhibit the best stability against crystallization with 7-9 mol'Yo Al(PO3)(3) content. Normalized Raman spectra were used to analyze structure and phonon state. The increment of Al(PO3)(3) content does not affect phonon energy but results in the augment of phonon density. Absorption spectra were measured. H-3(6) -> F-3(4) transition exhibits absorption at L band of the third communication window. Compared with the energy of Tm3+ excited states in other glass system, F-3(4) energy of Tm3+ in these glasses is considerable higher and H-3(4) energy is considerable lower, and it can be predicted that emission band of H-3(4) -> F-3(4) transition is close to the amplified band of gain-shift Tm3+ doped fiber amplifier. Analyses of Judd-Ofelt theory suggest when Al(PO3)(3) content is no more than 7 mol%, Judd-Ofelt parameters Omega(t) and the lifetime of H-3(4) energy level of TM3+ vary little with the increment of Al(PO3)(3) content, and when Al(PO3)(3) content is more than 7 mol%, Omega(2) and Omega(6) increase and radiative lifetime of H-3(4) energy level of Tm3+ drops sharply with the increment of Al(PO3)(3) content. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
包边技术是提高大尺寸激光玻璃饱和增益系数的关键技术。采用传统的方法熔制玻璃,研究了 P2O5含量对 P2O5-Al2O3-B2O3-CuCl-Na2O-ZnO磷酸盐包边玻璃的折射率、热膨胀系数、玻璃转变温度、膨胀软化温度以及化学稳定性的影响。结果表明:当 P2O5的摩尔分数为 60%左右,玻璃样品具有最高的折射率(1.522 0)、最低的玻璃转变温度(352.4 ℃)、较好的化学稳定性[0.52 mg/(cm^2·d)]和适宜的热膨胀系数(128.427×10^-7/℃),是用作钕磷酸盐激光玻璃硬包边的理
Resumo:
A systematic investigation on glass formation in the PbF2-InF3-BaHPO4 ternary system has been carried out. These glasses have characterized by IR spectra, Raman spectra and differential thermal analysis. The results show that the structure of these glasses is mainly affected by BaHPO4 and InF3 contents. With decreasing BaHPO4 content, the glass structure gradually transforms from metaphosphate to polyphosphate. When InF3 content is low, it mainly acts as network modifier, when its content is high; it enters glass matrix and forms In(O,F)(6) groups connecting the polymerized phosphorus oxygen species. PbF2 mainly acts as network modifier in this system. Systematic variations of the glass transition temperature and the thermal stability index agree well with these results. The most stable glass with Delta T = 230 degrees C and S = 21.79 K is obtained. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The physical and thermal properties Of P2O5-Al2O3-BaO-La2O3 glasses were investigated. The effects of glass compositions on the transition temperature, thermal expansion coefficient, density, hardness and refractive index of glasses were studied. The highest hardness of the glasses is 4143.891 MPa and the lowest thermal expansion coefficient of the glasses is 71.770 x 10(-7)/° C. A phosphate glass with high mechanical strength and good thermal characteristic is obtained.
Resumo:
(100 - x)TeO2 - xNb(2)O(5) (x=5-20) mobic tellurite glasses doped with 0.5 mol.% Er2O3 were synthesized, and their thermal, mechanical, and spectroscopic properties were measured and compared to the properties of the typical 75TeO(2)-20ZnO-5Na(2)O (TZN) tellurite glass. The refractive index (n(d)), density (p), and glass transition temperature (T-g) of bulk glasses increase with the Nb2O5 content. The Vickers microhardness (H-v) of bulk glass in niobic tellurite glasses also increases with the Nb2O5 content. The values (2.5-3.2 GPa) of H, in the niobic tellurite glasses are 47-88% larger than that (1.7 GPa) in TZN glass. The effect of Nb2O5 content on absorption spectra, the Judd-Ofelt parameters Omega(t) (t = 2, 4, 6), fluorescence spectra and the lifetimes of Er3+ :I-13/2 level were also investigated, and the stimulated emission crosssection was calculated from McCumber theory. With increasing Nb2O5 content in the glass composition, the Omega(t) (t = 2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) Of I-13/2 of Er3+ increase, while the I-4(13/2) lifetimes of Er3+ decreases. Compared with TZN glass, the gain bandwidth properties of Er3+-doped TeO2-Nb2O5 glass is much larger than in tellurite glass based TeO2-ZnO-Na2O system, bismush-based glass, germanate, and silicate glasses, which indicates that TeO2-Nb2O5 glasses are better choice as a practical available host material for broadband Er3+-doped amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+-doped TeO2-WO3 glass was fabricated and characterized by absorption spectrum, fluorescence spectrum, Raman spectrum and stability. The Judd-Ofelt parameter ohm(t)(t = 2, 4, 6) were calculated from the absorption spectrum by the Judd-Ofelt theory. The fluorescence spectrum indicates that the fluorescence width at half-maximum (FWHM) is 66nm. The stimulated emission cross-section of Er3+ in TeO2-WO3 glass at 1532 nm was calculated to be 0.80 x 10(-20) cm(2) by McCumber theory. The phonon energy of TeO2-WO3 glass is found to be 931 cm(-1). The difference between crystallization onset temperature and glass transition temperature Delta T is 112 degrees C. These results show that Er3+-doped TeO2-WO3 glass has higher stability and good spectral properties, which were useful for broadband amplifier. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Tungsten-tellurite glass with molar composition of 60TeO(2)-30WO(3)-10Na(2)O has been investigated for developing planar broadband waveguide amplifier application. Spectroscopic properties and thermal stability of Er3+-doped tungsten-tellurite glass have been discussed. The results show that the introduction Of WO3 increases significantly the glass transition temperature and the maximum phonon energy. Er3+-doped tungsten-tellurite glass exhibits high glass transition temperature (377 degrees C), large emission cross-section (0.91 x 10(-20) cm(2)) at 1532 nm and broad full width at half maximum (FWHM), which make it preferable for broadband Er3+-doped waveguide amplifier application. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Em geral, o efeito magnetocalórico (EMC) é caracterizado pela variação adiabática da temperatura (ΔTad) e a variação isotérmica da entropia (ΔST) sob variações do campo magnético. Devido as aplicações tecnológicas do EMC na refrigeração magnética, que não apresentam efeitos perigosos para o meio ambiente e tem o potencial para reduzir o consumo de energia, os estudos sobre o EMC tem crescido ao longo dos anos . Neste trabalho, estudamos as propriedades magnéticas e magnetocalóricos da série Gd (1-Y) Pr (Y) Ni2 com Y = 0; 0,25; 0,5; 0,75 e 1 A série dos compostos RNi2 compostos cristalizam na fase de Laves cúbico C15, o que torna o Campo Elétrico Cristalino cúbico um quadro adequado para descrever a anisotropia magnética sobre estes compostos . Além do modelo hamiltoniano inclui contribuições do efeito Zeeman e as interações de troca indireta entre Gd-Gd, Gd-Pr e íons Pr-Pr. Vale a pena notar que o GdNi2 apresenta um arranjo ferromagnético com temperatura de transição de cerca de 78 K e o composto PrNi2 é paramagnético. Os potenciais magnetocalóricos foram calculados e comparados com os dados experimentais. Além disso, investigamos a influência da direção do campo magnético sobre as quantidades magnéticas e no EMC investigada.
Resumo:
种子贮藏稳定性对于种质资源的长期保存具有重要意义,目前关于种子贮藏的最新理论为玻璃态理论,该理论认为种子的玻璃化有利于种子的长期贮藏。当种子处于玻璃态时,玻璃化物质的高度粘滞性降低了种子细胞内分子流动性,阻止了细胞质中分子的扩散,从而减少老化过程中细胞结构的损伤和化学组分的变化,延缓种子老化劣变反应速率,延长贮藏寿命。评价玻璃态的一个重要指标是玻璃化转变温度,当种子贮藏于玻璃化温度或以下10℃~30℃范围内时,种子具有最佳的贮藏稳定性。因此,检测种子的玻璃化转变温度对于种子的长期有效贮藏具有重要指导意义。 本研究将差示量热扫描技术(DSC)与电子顺磁共振波谱仪技术(EPR)应用于杜仲种子玻璃化转变温度方面的研究。在DSC方法中,选用4.4%~31.6%含水量范围的杜仲种胚分别进行了DSC图谱扫描。EPR方法选用3-羧基-2,2,5,5-四甲基吡咯烷-1-氧(3-carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl,CP)和2,2,6,6-四甲基哌啶(4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy,TEMPO)作为探针标记杜仲种胚, 利用EPR技术测定不同含水量杜仲种胚的分子运动,通过对EPR图谱参数的分析计算,最终确定不同含水量杜仲种胚的玻璃化转变温度。 DSC实验结果显示,含水量为22.3%、28.0%、31.6%的杜仲种胚在0℃ 左右出现了一个水的熔融峰。该熔融峰的面积代表了自由水含量的多少,随着种胚含水量的降低该熔融峰面积减小。4.4%~31.6%含水量范围的杜仲种胚在-28℃左右还出现了一个熔融峰,推测此峰为杜仲种胚中某类物质熔融所形成的熔融峰。然而在此曲线上我们未观察到标志玻璃化转变的“台阶”出现。 CP-EPR实验的结果表明,利用EPR测定得到含水量为4.4%~11.6%的杜仲种胚在-110℃~20℃温度范围内,同一含水量的杜仲种胚随着温度的升高,分子运动速率加快;在同一温度条件下,高含水量的种胚比低含水量种胚的分子运动速率快。通过CP-EPR波谱两外缘峰最大距离(2Azz)的测定和数据统计分析,得到含水量为4.4%、5.7%、8.6%、10.3%、11.6%杜仲种胚的玻璃化转变温度分别约为44℃、25℃、4℃、-31℃、-43℃。可以把测定的杜仲种胚的这几个含水量的玻璃化转变温度与杜仲种子贮藏相结合,用于指导杜仲种子的贮藏。 TEMPO-EPR实验测定分析得到含水量为2.1%、3.4%、4.8%、8.3%、11.2% 的杜仲种胚的玻璃化转变温度分别为-21℃、-18℃、-24℃、-20℃、-27℃,玻璃化转变温度随含水量升高其变化的规律不明显,这与CP-EPR实验测得的结果有着较明显的差别。通过分析,认为对于脂质含量较高的杜仲种胚,随着含水量的降低,作为标记化合物的TEMPO随着脱水进入脂相,从而不能真实反映出不同含水量种胚的分子运动情况。与TEMPO标记相比,CP标记可能能够更真实地反映不同含水量杜仲种胚细胞质分子运动的情况,根据其分子运动情况得到的玻璃化转变温度更准确。
Resumo:
Silver paint has been tested as a soldering agent for DyBaCuO single-domain welding. Junctions have been manufactured on Dy-Ba-Cu-O single-domains cut either along planes parallel to the c-axis or along the ab-planes. Microstructural and superconducting characterisations of the samples have been performed. For both types of junctions, the microstructure in the joined area is very clean: no secondary phase or Ag particles segregation has been observed. Electrical and magnetic measurements for all configurations of interest are reported $\rho(T)$ curves, and Hall probe mapping). The narrow resistive superconducting transition reported for all configurations shows that the artificial junction does not affect significantly the measured superconducting properties of the material.
Resumo:
Results of X-ray absorption fine structure measurements in manganites (La1-xHox)2/3Ca1/3MnO3 with 0.15 < x < 0.50 are presented. When LaMnO3 is doped with a, divalent element such as Ca2+, substituting for La3+, holes are induced in the filled Mn d orbitais. This leads to a, strong ferromagnetic coupling between Mn sites. Ca ions in La1-xCa xMnO3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn3+ and Mn4+). On the other hand, in manganites (La1-xHox)2/3Ca 1/3MnO3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials.
Resumo:
YBa 2Cu 3O 7-δ thick films have been deposited onto Ag substrates by the Electrophoretic Deposition (EPD) technique. Different microstructures and electrical behaviours were observed depending on the starting powder. Coatings prepared from commercial powder displayed significant porosity and the superconducting transition width was found to be magnetic-field dependent. Films produced from home-made coprecipitated powder are denser but contain some secondary phases. No dependence of the resistive transition as a function of magnetic field (H 20 Oe) was observed in that case. © 2006 IOP Publishing Ltd.
Resumo:
The objective of this article was the determination of the degree of crystallinity of a series of heat-set poly(ethylene terephthalate) (PET) films and their study by thermomechanical analysis (TMA) in order to elucidate a peculiar behaviour that takes place around the glass transition region. For this purpose, amorphous cast Mylar films from DuPont were annealed at 115 °C for various periods of time. Four methods were used to study the crystallinity of the samples prepared: differential scanning calorimetry (DSC), density measurements (DM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FT-IR). From the results obtained, the following conclusions are drawn: amorphous PET Mylar films can be crystallized in a degree of about up to 30% after thermal treatment for 30 min (cold crystallization) above glass transition temperature. When these semicrystalline samples are subjected to TMA, they show a two step penetration of the probe into them, which decreases with the increase of the degree of crystallinity. The first step of penetration was attributed to the shrinkage of the amorphous or semicrystalline sample, which takes place on the glass transition temperature, while the second step was attributed to the continuous softening of the sample, and the reorganization of the matter which takes place on heating run due to cold crystallization. © 2008 Elsevier Ltd. All rights reserved.