915 resultados para Sudan grass
Resumo:
Grass carp reovirus (GCRV) is a member of the Aquareovirus genus of the family Reoviridae, a large family of double-stranded RNA (dsRNA) viruses infecting plants, insects, fishes and mammals. We report the first subnanometer-resolution three-dimensional structures of both GCRV core and virion by cryoelectron microscopy. These structures have allowed the delineation of interactions among the over 1000 molecules in this enormous macromolecular machine and a detailed comparison with other dsRNA viruses at the secondary-structure level. The GCRV core structure shows that the inner proteins have strong structural similarities with those of orthoreoviruses even at the level of secondary-structure elements, indicating that the structures involved in viral dsRNA interaction and transcription are highly conserved. In contrast, the level of similarity in structures decreases in the proteins situated in the outer layers of the virion. The proteins involved in host recognition and attachment exhibit the least similarities to other members of Reoviridae. Furthermore, in GCRV, the RNA-translocating turrets are in an open state and lack a counterpart for the sigma1 protein situated on top of the close turrets observed in mammalian orthoreovirus. Interestingly, the distribution and the organization of GCRV core proteins resemble those of the cytoplasmic polyhedrosis virus, a cypovirus and the structurally simplest member of the Reoviridae family. Our results suggest that GCRV occupies a unique structure niche between the simpler cypoviruses and the considerably more complex mammalian orthoreovirus, thus providing an important model for understanding the structural and functional conservation and diversity of this enormous family of dsRNA viruses.
Resumo:
Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.
Resumo:
The present map sheet is one of six field maps of the Darfur Map Series Release II (1:250'000). The maps and the geodatabase were preparded by the Centre for Development and Environment (CDE) of the University of Berne with funding from the Swiss Federal Department of Foreign Affairs. The map is being released as a technical contribution to support the humanitarian, peace-keeping and reconstruction efforts in Darfur, Western Sudan.
Resumo:
The present map sheet is one of six field maps of the Darfur Map Series Release II (1:250'000). The maps and the geodatabase were preparded by the Centre for Development and Environment (CDE) of the University of Berne with funding from the Swiss Federal Department of Foreign Affairs. The map is being released as a technical contribution to support the humanitarian, peace-keeping and reconstruction efforts in Darfur, Western Sudan.
Resumo:
The present map sheet is one of six field maps of the Darfur Map Series Release II (1:250'000). The maps and the geodatabase were preparded by the Centre for Development and Environment (CDE) of the University of Berne with funding from the Swiss Federal Department of Foreign Affairs. The map is being released as a technical contribution to support the humanitarian, peace-keeping and reconstruction efforts in Darfur, Western Sudan.
Resumo:
The present map sheet is one of six field maps of the Darfur Map Series Release II (1:250'000). The maps and the geodatabase were preparded by the Centre for Development and Environment (CDE) of the University of Berne with funding from the Swiss Federal Department of Foreign Affairs. The map is being released as a technical contribution to support the humanitarian, peace-keeping and reconstruction efforts in Darfur, Western Sudan.
Resumo:
The present map sheet is one of six field maps of the Darfur Map Series Release II (1:250'000). The maps and the geodatabase were preparded by the Centre for Development and Environment (CDE) of the University of Berne with funding from the Swiss Federal Department of Foreign Affairs. The map is being released as a technical contribution to support the humanitarian, peace-keeping and reconstruction efforts in Darfur, Western Sudan.
Resumo:
The present map sheet is one of six field maps of the Darfur Map Series Release II (1:250'000). The maps and the geodatabase were preparded by the Centre for Development and Environment (CDE) of the University of Berne with funding from the Swiss Federal Department of Foreign Affairs. The map is being released as a technical contribution to support the humanitarian, peace-keeping and reconstruction efforts in Darfur, Western Sudan.
Resumo:
The present map was prepared at the request of the 'Intergovernmental Authority on Development' (IGAD) for the 'Abyei Boundaries Commission', whose work is in progress as part of the implementation of the Comprehensive Peace Agreement signed on January 9, 2005. The map and the geodatabase were prepared by the Centre for Development and Environment (CDE) of the University of Berne, Switzerland, with funding from the Swiss Federal Department of Foreign Affairs. Boundaries, transliteration, settlement locations and the North-South demarcation line of 1956 drawn on this map are not authoritative and should not be considered as such.
Resumo:
Atmospheric ammonia (NH3) exchange during a single growing season was measured over two grass/clover fields managed by cutting and treated with different rates of mineral nitrogen (N) fertilizer. The aim was to quantify the total NH3 exchange of the two systems in relation to their N budget, the latter was split into N derived from symbiotic fixation, from fertilization, and from the soil. The experimental site was located in an intensively managed agricultural area on the Swiss plateau. Two adjacent fields with mixtures of perennial ryegrass (Lolium perenne L.), cocks foot (Dactylis glomerata L.), white clover (Trifolium repens L.) and red clover (Trifolium pratense L.) were used. These were treated with either 80 or 160 kg N ha−1 applied as NH4NO3 fertilizer in equal portions after each of four cuts. Continuous NH3 flux measurements were carried out by micrometeorological techniques. To determine the contribution of each species to the overall NH3 canopy compensation point, stomatal NH3 compensation points of the individual plant species were determined on the basis of NH4+ + NH3 (NHx) concentrations and pH in the apoplast. Symbiotic N2 fixation was measured by the 15N dilution method.
Resumo:
Genetic diversity in plant populations has been shown to affect the species diversity of insects. In grasses, infection with fungal endophytes can also have strong effects on insects, potentially modifying the effects of plant genetic diversity. We manipulated the genetic diversity and endophyte infection of a grass in a field experiment. We show that diversity of primary parasitoids (3rd trophic level) and, especially, secondary parasitoids (4th trophic level) increases with grass genetic diversity while there was no effect of endophyte infection. The increase in insect diversity appeared to be due to a complementarity effect rather than a sampling effect. The higher parasitoid diversity could not be explained by a cascading diversity effect because herbivore diversity was not affected and the same herbivore species were present in all treatments. The effects on the higher trophic levels must therefore be due to a direct response to plant traits or mediated by effects on traits at intermediate trophic levels.
Resumo:
Decomposition rates and N release patterns of turfgrass clippings from lawns are not well understood. Litter bags containing clippings were inserted into the thatch layer of a coolseason turf. The experiment was arranged as a 2 × 4 factorial in a randomized complete block design with three replicates. Treatments included four rates of N fertilizer (0, 98, 196, and 392 kg N ha-1 yr-1) and two clipping treatments (returned vs. removed). Litter bags were removed periodically over the growing season and samples were analyzed for biomass, N and C concentrations, and C:N ratio on an ash-free basis. Percentage N loss from the clippings after 16 weeks ranged from 88% to 93% at the 0 and 392 kg N ha-1 rates, respectively, and from 86% to 94% when clippings were removed (CRM) or returned (CRT), respectively. Percentage C loss from the clippings ranged from 94% to 95% at the 0 and 392 kg N ha-1 rates, respectively, and from 92% to 96% with CRM and CRT, respectively. Cumulative N release was similar across N fertilization rates, (ranging from 131 g N kg-1 to 135 g N kg-1 tissue) but was higher for CRT (151 g N kg-1 tissue) than for CRM (128 g N kg-1 tissue). Grass clippings decomposed rapidly and released N quickly when returned to the turf thatch layer. This indicates the potential for reduced N fertilization when clippings are returned. Such rapid decomposition also suggests that the contribution of grass clippings to thatch development is negligible.