927 resultados para Sudan dye adducts
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Comparative Analysis of Azo Dye Biodegradation by Aspergillus oryzae and Phanerochaete chrysosporium
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N-2-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N-2-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo- [1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H2O2 or tent-butyl hydroperoxide. Neutral conditions, in the presence of H2O2, have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation process can be assessed.
Resumo:
A recent study showed that tetrahydrofuran (THF), a widely used solvent, is carcinogenic in experimental animals. Despite its carcinogenic activity, there is a paucity of information regarding cellular toxicity, biomolecular damage, and genotoxicity induced by THF. We describe here the structural characterization of adducts produced by the reaction of oxidized THF with 2'-deoxyguanosine (dGuo-THF 1 and dGuo-THF 2), 2'-deoxyadenosine (dAdo-THF), and 2'-deoxycytidine (dCyd-THF). Adducts were isolated from in vitro reactions by reverse-phase HPLC and fully characterized on the basis of spectroscopic measurements. The stable derivatives obtained by the reduction of adducts with NaBH4 ( the case of dGuo-THF 1, dCyd-THF, and dAdo-THF) and the stable adduct dGuo-THF 2 were used as standards for optimization of chromatographic separations for adduct detection in DNA through HPLC/ESI/MSMS. Using this methodology, we successfully detected the four adducts in calf thymus DNA reacted with oxidized THF. The present study also provides evidence that rat liver microsomal monooxigenases oxidize THF to the reactive electrophilic compounds that are able to damage the DNA molecule, as indicated by a significant increase in adduct dGuo-THF 1 level when NADPH was added to the THF/ microsomes/dGuo incubation mixtures. Our data point to DNA-THF adducts as possible contributing factors to the toxicological effects of THF exposure.
Resumo:
trans,trans-2,4-Decadienal (DDE) is an important breakdown product of lipid peroxidation. This aldehyde is cytotoxic to mammalian cells and is known to be implicated in DNA damage. Therefore, attempts were made in this work to assess the reactivity of DDE with 2'-deoxyadenosine (dAdo). It was shown that DDE is able to bind to 2'-deoxyadenosine, yielding highly fluorescent products. Besides 1,N-6-etheno-2'-deoxyadenosine (epsilon dAdo), two other related adducts, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)3H-imidazo[2,1-i]purin-7-yl]-1,2,3-octanetriol and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2,1-i]purin-7-yl]-1,2-heptanediol, were isolated by reverse phase high-performance liquid chromatography and characterized on the basis of their UV, fluorescence, nuclear magnetic resonance, and mass spectrometry features. The reaction mechanism for the formation of the DDE-2'-deoxyadenosine adducts involves 2,4-decadienal epoxidation and subsequent addition to the N-2 amino group of 2'-deoxyadenosine, followed by cyclization at the N-1 site. Adducts differ by the length of carbon side chain and the number of hydroxyl groups. The present data indicate that DDE can be epoxidized by peroxides, and the resulting products are able to form several adducts with 2'-deoxyadenosine and/or DNA. Endogenous DNA adduct formation can contribute to the already reported high cytotoxicity of DDE to mammalian cells.
Coomassie Brilliant blue dye toxicity screen using Drosophila melanogaster (Diptera - Drosophilidae)
Resumo:
The photon statistics of the random laser emission of a Rhodamine B doped di-ureasil hybrid powder is investigated to evaluate its degree of coherence above threshold. Although the random laser emission is a weighted average of spatially uncorrelated radiation emitted at different positions in the sample, a spatial coherence control was achieved due to an improved detection configuration based on spatial filtering. By using this experimental approach, which also allows for fine mode discrimination and timeresolved analysis of uncoupled modes from mode competition, an area not larger than the expected coherence size of the random laser is probed. Once the spectral and temporal behavior of nonoverlapping modes is characterized, an assessment of the photon-number probability distribution and the resulting second-order correlation coefficient as a function of time delay and wavelength was performed. The outcome of our single photon counting measurements revealed a high degree of temporal coherence at the time of maximum pump intensity and at wavelengths around the Rhodamine B gain maximum.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)