974 resultados para Structural systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates mechanisms and boundary conditions that steer the early localisation of deformation and strain in carbonate multilayers involved in thrust systems, under shallow and mid-crustal conditions. Much is already understood about deformation localisation, but some key points remain loosely constrained. They encompass i) the understanding of which structural domains can preserve evidence of early stages of tectonic shortening, ii) the recognition of which mechanisms assist deformation during these stages and iii) the identification of parameters that actually steer the beginning of localisation. To clarify these points, the thesis presents the results of an integrated, multiscale and multi-technique structural study that relied on field and laboratory data to analyse the structural, architectural, mineralogical and geochemical features that govern deformation during compressional tectonics. By focusing on two case studies, the Eastern Southern Alps (northern Italy), where deformation is mainly brittle, and the Oman Mountains (northeastern Oman), where ductile deformation dominates, the thesis shows that the deformation localisation is steered by several mechanisms that mutually interact at different stages during compression. At shallow crustal conditions, derived conceptual and numerical models show that both inherited (e.g., stratigraphic) and acquired (e.g., structural) features play a key role in steering deformation and differentiating the seismic behaviour of the multilayer succession. At the same time, at deeper crustal conditions, strain localises in narrow domains in which fluids, temperature, shear strain and pressure act together during the development of the internal fabric and the chemical composition of mylonitic shear zones, in which localisation took place under high-pressure (HP) and low-temperature (LT) conditions. In particular, results indicate that those shear zones acted as “sheltering structural capsules” in which peculiar processes can happen and where the results of these processes can be successively preserved even over hundreds of millions of years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research is to improve the understanding of the factors that control the formation of karst porosity in hypogene settings and its associated patterns of void-conduit networks. Subsurface voids created by hypogene dissolution may span from few microns to decametric tubes providing interconnected conduit systems and forming highly anisotropic permeability domains in many reservoirs. Characterizing the spatial-morphological organization of hypogene karst is a challenging task that has dramatic implications for the applied industry, given that only partial data can be acquired from the subsurface by indirect techniques. Therefore, two outcropping cave analogues are examined: the Cavallone-Bove Cave in the Majella Massif (Italy), and the karst systems of the Salitre Formation (Brazil). In the latter, a peculiar example of hypogene speleogenesis associated with silicification has been studied, providing an analogue of many karstified reservoirs hosted in cherts or cherty-carbonates within mixed sedimentary sequences. The first part of the thesis is focused on the relationships between fracture patterns and flow pathways in deformed units in: 1) a fold-and-thrust setting (Majella Massif); 2) a cratonic block (Brazil). These settings represent potential playgrounds for the migration and accumulation of geofluids, where hypogene conduits may affect flow pathways, fluid storage, and reservoir properties. The results indicate that localized deformation producing cross-formational fracture zones associated with anticline hinges or fault damage zones is critical for hypogene fluid migration and karstification. The second part of the thesis deals with the multidisciplinary study of hydrothermal silicification and hypogene dissolution in Calixto Cave (Brazil). Petrophysical analyses and a geochemical characterization of silica deposits are used to unravel the spatial-morphological organization of the conduit system and its speleogenesis. The novel results obtained from this cave shed new light on the relationship between hydrothermal silicification, hypogene dissolution and the development of multistorey cave systems in layered carbonate-siliciclastic sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To change unadapted water governing systems, and water users’ traditional conducts in line with climate change, understanding of systems’ structures and users’ behaviors is necessary. To this aim, comprehensive and pragmatic research was designed and implemented in the Urmia Lake Basin where due to the severe droughts, and human-made influences, especially through the agricultural development, the lake has been shrunken drastically. To analyze the water governance and conservation issues in the basin, an innovative framework was developed based on mathematical physics concepts and pro-environmental behavior theories. Accordingly, in system level (macro/meso), the problem of fit of the early-shaped water governing system associating with the function of “political-security” and “political-economic” factors in the basin was identified through mean-field models. Furthermore, the effect of a “political-environmental” factor, the Urmia Lake Restoration Program (ULRP), on reforming the system structure and hence its fit was assessed. The analysis results revealed that by revising the provincial boundaries (horizontal alternation) for the entity of Kurdistan province to permit that interact with the headquarter of West Azerbaijan province for its water demand-supply initiatives, the system fit can increase. Also, the constitution of the ULRP (vertical arrangement) not only could increase the structural fit of the water governing system to the basin, but also significantly could enhance the system fit through its water-saving policy. Besides, in individual level (micro), the governing factors of water conservation behavior of the major users/farmers were identified through rational and moral socio-psychological models. In rational approach, incorporating PMT and TPB, the SEM results demonstrated that “Perceived Vulnerability”, “Self-Efficacy”, “Response Efficacy”, “Response Cost”, “Subjective Norms” and “Institutional Trust” significantly affect the water-saving intention/behavior. Likewise, NAM based analysis as a moral approach, uncovered the significant effects of “Awareness of Consequences”, “Appraisal of Responsibility”, “Personal Norms” as well as “Place Attachment” and “Emotions” on water-saving intention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Structural Health Monitoring (SHM) research area is increasingly investigated due to its high potential in reducing the maintenance costs and in ensuring the systems safety in several industrial application fields. A growing demand of new SHM systems, permanently embedded into the structures, for savings in weight and cabling, comes from the aeronautical and aerospace application fields. As consequence, the embedded electronic devices are to be wirelessly connected and battery powered. As result, a low power consumption is requested. At the same time, high performance in defects or impacts detection and localization are to be ensured to assess the structural integrity. To achieve these goals, the design paradigms can be changed together with the associate signal processing. The present thesis proposes design strategies and unconventional solutions, suitable both for real-time monitoring and periodic inspections, relying on piezo-transducers and Ultrasonic Guided Waves. In the first context, arrays of closely located sensors were designed, according to appropriate optimality criteria, by exploiting sensors re-shaping and optimal positioning, to achieve improved damages/impacts localisation performance in noisy environments. An additional sensor re-shaping procedure was developed to tackle another well-known issue which arises in realistic scenario, namely the reverberation. A novel sensor, able to filter undesired mechanical boundaries reflections, was validated via simulations based on the Green's functions formalism and FEM. In the active SHM context, a novel design methodology was used to develop a single transducer, called Spectrum-Scanning Acoustic Transducer, to actively inspect a structure. It can estimate the number of defects and their distances with an accuracy of 2[cm]. It can also estimate the damage angular coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial gap between two defects is ensured. A suitable signal processing was developed in order to limit the computational cost, allowing its use with embedded electronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Thesis wants to highlight the importance of ad-hoc designed and developed embedded systems in the implementation of intelligent sensor networks. As evidence four areas of application are presented: Precision Agriculture, Bioengineering, Automotive and Structural Health Monitoring. For each field is reported one, or more, smart device design and developing, in addition to on-board elaborations, experimental validation and in field tests. In particular, it is presented the design and development of a fruit meter. In the bioengineering field, three different projects are reported, detailing the architectures implemented and the validation tests conducted. Two prototype realizations of an inner temperature measurement system in electric motors for an automotive application are then discussed. Lastly, the HW/SW design of a Smart Sensor Network is analyzed: the network features on-board data management and processing, integration in an IoT toolchain, Wireless Sensor Network developments and an AI framework for vibration-based structural assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum Materials are many body systems displaying emergent phenomena caused by quantum collective behaviour, such as superconductivity, charge density wave, fractional hall effect, and exotic magnetism. Among quantum materials, two families have recently attracted attention: kagome metals and Kitaev materials. Kagome metals have a unique crystal structure made up of triangular lattice layers that are used to form the kagome layer. Due to superconductivity, magnetism, and charge ordering states such as the Charge Density Wave (CDW), unexpected physical phenomena such as the massive Anomalous Hall Effect (AHE) and possible Majorana fermions develop in these materials. Kitaev materials are a type of quantum material with a unique spin model named after Alexei Kitaev. They include fractional fluctuations of Majorana fermions and non-topological abelian anyons, both of which might be used in quantum computing. Furthermore, they provide a realistic framework for the development of quantum spin liquid (QSL), in which quantum fluctuations produce long-range entanglements between electronic states despite the lack of classical magnetic ordering. In my research, I performed several nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and muon spin spectroscopy (µSR) experiments to explain and unravel novel phases of matter within these unusual families of materials. NMR has been found to be an excellent tool for studying these materials’ local electronic structures and magnetic properties. I could use NMR to determine, for the first time, the structure of a novel kagome superconductor, RbV3Sb5, below the CDW transition, and to highlight the role of chemical doping in the CDW phase of AV3Sb5 superconductors. µSR has been used to investigate the effect of doping on kagome material samples in order to study the presence and behaviour of an anomalous phase developing at low temperatures and possibly related to time-reversal symmetry breaking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis is dedicated to the implementation of advanced x-ray-based techniques for the investigation of the battery systems, more predominantly, the cathode materials. The implemented characterisation methods include synchrotron based x-ray absorption spectroscopy, powder x-ray diffraction, 2-dimensional x-ray fluorescence, full field transmission soft x-ray microscopy, and laboratory x-ray photoelectron spectroscopy. The research highlights the different areas of expertise for each described method, in terms of material characterisation, exploring their complementarities and intersections. The results are focused over manganese hexacyanoferrate and partially Ni substituted manganese hexacyanoferrate, through both organic and aqueous battery systems. In aqueous system, the modification of cathode composition has been observed with various techniques, indicating to the processes occurring in bulk, surface, locally or in long-range, including with the speciation by 2-dimensional scanning, and the time-resolution, by the implementation of the operando measurements. In organic media, the inhomogenisation of the cathode material during the aging process was investigated by the development of the special image treatment procedure for the maps, obtained from the transmission soft x-ray microscopy. It worth mentioning, that apart from the combination of the outcomes from the various x-ray measurements, the exploration of the new capabilities was also conducted, namely, probing the oxidation state of the element with the synchrotron-based 2-dimensional x-ray fluorescence technique, which, generally, with conventional set up, is not possible to achieve. The results and methodology from this thesis can, of course, be generalised on the characterisation of the other battery systems, and not only, as the x-ray techniques are one of the most informative and sophisticated methods for advanced structural investigation of the materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertensive patients exhibit higher cardiovascular risk and reduced lung function compared with the general population. Whether this association stems from the coexistence of two highly prevalent diseases or from direct or indirect links of pathophysiological mechanisms is presently unclear. This study investigated the association between lung function and carotid features in non-smoking hypertensive subjects with supposed normal lung function. Hypertensive patients (n = 67) were cross-sectionally evaluated by clinical, hemodynamic, laboratory, and carotid ultrasound analysis. Forced vital capacity, forced expired volume in 1 second and in 6 seconds, and lung age were estimated by spirometry. Subjects with ventilatory abnormalities according to current guidelines were excluded. Regression analysis adjusted for age and prior smoking history showed that lung age and the percentage of predicted spirometric parameters associated with common carotid intima-media thickness, diameter, and stiffness. Further analyses, adjusted for additional potential confounders, revealed that lung age was the spirometric parameter exhibiting the most significant regression coefficients with carotid features. Conversely, plasma C-reactive protein and matrix-metalloproteinases-2/9 levels did not influence this relationship. The present findings point toward lung age as a potential marker of vascular remodeling and indicate that lung and vascular remodeling might share common pathophysiological mechanisms in hypertensive subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and maintenance of the sealing of the root canal system is the key to the success of root canal treatment. The resin-based adhesive material has the potential to reduce the microleakage of the root canal because of its adhesive properties and penetration into dentinal walls. Moreover, the irrigation protocols may have an influence on the adhesiveness of resin-based sealers to root dentin. The objective of the present study was to evaluate the effect of different irrigant protocols on coronal bacterial microleakage of gutta-percha/AH Plus and Resilon/Real Seal Self-etch systems. One hundred ninety pre-molars were used. The teeth were divided into 18 experimental groups according to the irrigation protocols and filling materials used. The protocols used were: distilled water; sodium hypochlorite (NaOCl)+eDTA; NaOCl+H3PO4; NaOCl+eDTA+chlorhexidine (CHX); NaOCl+H3PO4+CHX; CHX+eDTA; CHX+ H3PO4; CHX+eDTA+CHX and CHX+H3PO4+CHX. Gutta-percha/AH Plus or Resilon/Real Seal Se were used as root-filling materials. The coronal microleakage was evaluated for 90 days against Enterococcus faecalis. Data were statistically analyzed using Kaplan-Meier survival test, Kruskal-Wallis and Mann-Whitney tests. No significant difference was verified in the groups using chlorhexidine or sodium hypochlorite during the chemo-mechanical preparation followed by eDTA or phosphoric acid for smear layer removal. The same results were found for filling materials. However, the statistical analyses revealed that a final flush with 2% chlorhexidine reduced significantly the coronal microleakage. A final flush with 2% chlorhexidine after smear layer removal reduces coronal microleakage of teeth filled with gutta-percha/AH Plus or Resilon/Real Seal SE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effectiveness of Reciproc for the removal of cultivable bacteria and endotoxins from root canals in comparison with multifile rotary systems. The root canals of forty human single-rooted mandibular pre-molars were contaminated with an Escherichia coli suspension for 21 days and randomly assigned to four groups according to the instrumentation system: GI - Reciproc (VDW); GII - Mtwo (VDW); GIII - ProTaper Universal (Dentsply Maillefer); and GIV -FKG Race(™) (FKG Dentaire) (n = 10 per group). Bacterial and endotoxin samples were taken with a sterile/apyrogenic paper point before (s1) and after instrumentation (s2). Culture techniques determined the colony-forming units (CFU) and the Limulus Amebocyte Lysate assay was used for endotoxin quantification. Results were submitted to paired t-test and anova. At s1, bacteria and endotoxins were recovered in 100% of the root canals investigated (40/40). After instrumentation, all systems were associated with a highly significant reduction of the bacterial load and endotoxin levels, respectively: GI - Reciproc (99.34% and 91.69%); GII - Mtwo (99.86% and 83.11%); GIII - ProTaper (99.93% and 78.56%) and GIV - FKG Race(™) (99.99% and 82.52%) (P < 0.001). No statistical difference were found amongst the instrumentation systems regarding bacteria and endotoxin removal (P > 0.01). The reciprocating single file, Reciproc, was as effective as the multifile rotary systems for the removal of bacteria and endotoxins from root canals.