986 resultados para Structural composite
Resumo:
“Drilling of polymeric matrix composites structures”
Resumo:
The use of fiber reinforced plastics has increased in the last decades due to their unique properties. Advantages of their use are related with low weight, high strength and stiffness. Drilling of composite plates can be carried out in conventional machinery with some adaptations. However, the presence of typical defects like delamination can affect mechanical properties of produced parts. In this paper delamination influence in bearing stress of drilled hybrid carbon+glass/epoxy quasi-isotropic plates is studied by using image processing and analysis techniques. Results from bearing test show that damage minimization is an important mean to improve mechanical properties of the joint area of the plate. The appropriateness of the image processing and analysis techniques used in the measurement of the damaged area is demonstrated.
Resumo:
The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A swift chemical route to synthesize Co-doped SnO2 nanopowders is described. Pure and highly stable Sn1-xCoxO2-delta (0 <= x <= 0.15) crystalline nanoparticles were synthesized, with mean grain sizes <5 nm and the dopant element homogeneously distributed in the SnO2 matrix. The UV-visible diffuse reflectance spectra of the Sn1-xCoxO2-delta samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The samples' Urbach energies were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1-xCoxO2-delta samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95Co0.05O2-delta nanoparticles in 60 min of irradiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and A13 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and A13, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at 14/0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.
Resumo:
New cationic ruthenium(II) complexes with the formula [Ru(eta(5)-C5H5)(LL)(1-BuIm)] [Z], with (LL) = 2PPh(3) or DPPE, and Z = CF3SO3-, PF6-, BPh4-, have been synthesized and fully characterized. Spectroscopic and electrochemical studies revealed that the electronic properties of the coordinated 1-butylimidazole were clearly influenced by the nature of the phosphane coligands (LL) and also by the different counter ions. The solid state structures of the six complexes determined by X-ray crystallographic studies, confirmed the expected distorted three-legged piano stool structure. However the geometry of the 1-butylimidazole ligand was found considerably different in all six compounds, being governed by the stereochemistry of the mono and bidentate coligands (PPh3 or DPPE).
Resumo:
Titanate nanotubes (TNT) with different sodium contents have been synthesised using a hydrothermal approach and a swift and highly controllable post-washing processes. The influence of the sodium/proton replacement on the structural and morphological characteristics of the prepared materials was analysed. Different optical behaviour was observed depending on the Na+/H+ samples’ content. A band gap energy of 3.27±0.03 eV was estimated for the material with higher sodium content while a value of 2.81±0.02 eV was inferred for the most protonated material, which therefore exhibits an absorption edge in the near visible region. The point of zero charge of the materials was determined and the influence of the sodium content on the adsorption of both cationic and anionic organic dyes was studied. The photocatalytic performance of the TNT samples was evaluated in the rhodamine 6G degradation process. Best photodegradation results were obtained when using the most protonated material as catalyst, although this material has shown the lowest R6G adsorption capability.
Resumo:
The objective of this work was to study the influence of the boundary conditions on low-velocity impact behaviour of carbon-epoxy composite plates. Experimental work and numerical analysis were performed on [04,904]s laminates. The influence of different boundary conditions on the impacted plates was analysed considering rectangular and square plates. The X-radiography was used as a non-destructive technique to evaluate the internal damage caused by impact loading. A three-dimensional numerical analysis was also performed considering progressive damage modelling. The model includes three-dimensional solid elements and interface finite elements including a cohesive mixed-mode damage model, which allows simulating delamination between different oriented layers. It was verified that plate’s boundary conditions have influence on the delaminated area. Good agreement between experimental and numerical analysis for shape, orientation and size of the delamination was obtained.
Resumo:
The use of composite laminates in complex structures has increased significantly. However, there are still some issues when considering their use, mainly related with machining, leading to some difficulties and lack of acceptance. In this work, a methodology to evaluate drill geometry and feed rate based on thrust force and delamination extension is presented.
Resumo:
The characteristics of carbon fibre reinforced laminates have widened their use from aerospace to domestic appliances, and new possibilities for their usage emerge almost daily. In many of the possible applications, the laminates need to be drilled for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, damage assessment methods based on data extracted from radiographic images are compared and correlated with mechanical test results—bearing test and delamination onset test—and analytical models. The results demonstrate the importance of an adequate selection of drilling tools and machining parameters to extend the life cycle of these laminates as a consequence of enhanced reliability.
Resumo:
São conhecidos alguns trabalhos recentes que evidenciam a utilidade da investigação do efeito da modificação das propriedades dos adesivos no objetivo de influenciar as condições de iniciação do processo de rotura da zona de sobreposição e, consequentemente, do desempenho das juntas adesivas em condições de solicitação. Este trabalho inicia no ISEP um programa em que se pretende avaliar o efeito da introdução de um tecido em fibra de vidro, com espessura muito reduzida, no comportamento de juntas adesivas de sobreposição simples sujeitas a tração. A resistência mecânica, a ductilidade e a morfologia da superfície de rotura foram estudadas com vista a identificar as potenciais variáveis a controlar para desenvolver futuramente juntas adesivas compósitas que permita um desempenho superior quando comparadas com juntas adesivas idênticas sem qualquer modificação. Os resultados obtidos indiciaram que o acabamento superficial afetou claramente os resultados e que o comportamento mecânico é influenciado pelo comprimento de sobreposição.
Resumo:
Dissertação apresentada para obtenção de Grau de Doutor em Bioquímica,Bioquímica Estrutural, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
Trabalho de projecto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.