975 resultados para Storage Properties
Resumo:
The starch of maca (Lepidium meyenii Walpers) presented oval and irregular morphology, with granule size between 7.4 and 14.9 mu m in length and 5.8 and 9.3 mu m in diameter. The isolated starch showed the following features: purity of 87.8%, with 0.28% lipids, 0.2% fibre and 0.12% fixed mineral residue, and no protein detected; the ratio between the amylose and amylopectin contents were 20:80: the solubility at 90 degrees C was 61.4%, the swelling power was 119.0g water/g starch and the water absorption capacity was 45.9 g water/g starch; the gel turbidity rose 44% during the storing time; the gelatinization temperature was 47.7 degrees C and the transition enthalpy 6.22 J/g; the maximum viscosity reached 1260 UB at 46.4 degrees C, with breakdown, setback and consistence of 850, 440 and -410 UB, respectively. The low gelling temperature and the stability during gel refrigeration could be adequate for foods requiring moderate temperature process, but not for frozen food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The cashew apple (Anacardium occidentale L.) contains phenolic compounds usually related with antioxidant properties. Then, the aim of this study was to investigate its antioxidant capacity. The antioxidant capacity of the hydroalcoholic extract of the cashew apple pulp (EHAlc.) was assessed for the scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) by in vitro method and by an in vivo essay. For this essay a 30-day oral (gavage, EHAlc. 200 and 400 mg/kg) study was conducted in Wistar male rats, evaluating hepatic, plasma and brain tissues. In DPPH model, the extract demonstrated antioxidant activity of 95% (largest concentration, 1000 mu g/mL). There were found no relevant peroxidation comparing the treated animals with the control group. However, the treated group presented a lower level of brain lipoperoxidation. Also in the treated animals brain tissue was found the largest amount of polyunsaturated fatty acids (PUFA), mainly docosahexaenoic (DHA). Therqfore, the analyzed extract from cashew apple pulp clone CCP-76 contains effective natural antioxidants, responsible for free radical scavenging in vitro and also for decreasing the brain lipoperoxidation and keeping the PUFAS levels in Wistar rats.
Resumo:
BACKGROUND: The interaction between lipoxygenase-active soybean flour (LOX) and ascorbic acid (AA), on colour, rheological and sensory properties of wheat bread was studied with the aim of reducing the applied quantity of additives in bread formulations. RESULTS: The ascorbic acid (0-500 ppm) and active soybean flour (0-1%) mixture improved bread-crumb colour by lowering the yellow hue in a higher proportion than those expressed by the components alone, characterising a synergistic mechanism ((y) over cap (b) = 15.1- (1.7 x LOX) - (0.5 x AA) - (5.8 x LOX x AA), where : (y) over cap (b) represent the estimated value for the yellow hue parameter). No differences in flavour and porosity were seen between the samples. As supported by the instrumental methods, breads made with active soybean flour and ascorbic acid (LOX + AA) had whiter crumbs and were softer and springier than controls as assessed by a trained sensory panel. In summary, the combination of both active soybean flour and ascorbic acid showed synergism, promoting a greater bleaching effect than when used alone. CONCLUSION: These results suggest the potential use of active soybean flour as a synergistic ingredient in the substitution of artificial additives in bread making. Since the interaction on the bleaching response was not linear and active soybean flour showed a higher iron concentration (66.40 +/- 4.23 mu g g(-1)) than non-active soybean flour (52.30 +/- 0.40 mu g g(-1)), more studies are warranted to establish the biochemical mechanisms involved in this interaction. (c) 2007 Society of Chemical Industry.
Resumo:
introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3 1, mu m) and rheology profile. Transposition occurred from a batch of 500-50,000 g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Obtention and Evaluation of Inclusion Complexes of Furosemide with beta-ciclodextrin and hidroxipropil-beta-ciclodextrin: Effects on Drug`s Dissolution Properties. The purpose of this study was to prepare, characterize and evaluate the dissolution behavior of inclusion complexes of furosemide with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Solid complexes of furosemide with P-CD and-HP-beta-CD were prepared by using a freeze-drying method. Physical mixtures were prepared for comparison. The inclusion complexes were characterized by differential scanning calorimetry (DSC), Infrared (IR) and dissolution test. ""In vitro"" dissolutions assays were performed at pH 1,2; pH 4,5 and pH 6,8 media for a 60 min period. Statistical analysis employing ANOVA and Tukey`s Test, for the dissolution efficiency values (ED%), showed that complexation of furosemide with both cyclodextrins improved significantly ED% of the drug in all tested media, suggesting a minor pH influence on dissolution properties of the drug.
Resumo:
The cooling intensity of topical emulsions added with encapsulated or free menthol was evaluated by a screened and trained panel recruited based on the American Society for Testing and Materials method. A sensory panel composed of 10 trained judges performed the evaluation of samples stored at 22 +/- 2C for 24 h and, after 28 days of storage, at 37.0 +/- 0.5C. The obtained data were analyzed by analysis of variance and Tukey`s test. The results showed an increase of cooling intensity as a function of encapsulated menthol concentration. The opposite was observed in samples added with free menthol, which may have caused sensory fatigue. Storage at 37 +/- 0.5C for 28 days had no impact on the cooling intensity of emulsions containing encapsulated menthol, demonstrating high stability and suggesting its application in cooling skin care products. In contrast, emulsions added with free menthol showed a drastic decrease of cooling intensity at 37 +/- 0.5C..
Resumo:
Lactulose can be considered as a prebiotic, which is able to stimulate healthy intestinal microflora. In the present work, the use of this ingredient in fermented milk improved quality of skim milk fermented by Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus and Bifidobacterium lactis in co-culture with Streptococcus thermophilus. Compared to control fermentations without lactulose, the addition of such a prebiotic in skim milk increased the counts of all probiotics, with particular concern to B. lactis (bifidogenic effect), the acidification rate and the lactic acid acidity, and concurrently reduced the time to complete fermentation (t(pH4.5)) and the pH at the end of cold storage for 1 to 35 days. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Inulin behaved as a prebiotic to improve firmness of skim milk fermented by (a) pure cultures of Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), Lactobacillus bulgaricus (Lb) and Bifidobacterium lactis (Bl), (b) binary co-cultures of them with Streptococcus thermophilus (St), or (c) a cocktail containing all them. Inulin addition to co-cultures and cocktail enhanced products firmness, either after 1 day (D1) or 7 days (D7) of cold storage, likely due to the increase in microbial growth induced by metabolic interactions among lactic acid bacteria and partial inulin metabolization. Co-culture firmness did in fact range from 0.33 N without inulin (St-Lb) after D1 and 0.55 N with inulin (St-Lr) after D7. Also cocktail cultures exhibited high values of firmness, ranging, as an average, from 0.43 N (D1) to 0.46 N (D7), which suggests that they could have been potentiated by the reciprocal synergistic effects of microorganisms in complex mixture. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air-water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and kappa-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and kappa-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein-polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/kappa-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein-polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Bovine pericardium (BP) tissue is widely used in the manufacture of bioprosthetics. The effects of freeze-drying on the BP tissue have been studied by some researchers in order to decrease their cytotoxicity due to preservation in formaldehyde solution, and to increase the lifetime of the product in storage. This study was undertaken in order to study the effect of freeze-drying in the structure of BP. To perform this study BP samples were freeze-dried in two different types of freeze-dryers available in our laboratory: a laboratory freeze-dryer, in which it was not possible to control parameters and a pilot freeze-dryer, wherein all parameters during freezing and drying were controlled. After freeze-drying processes, samples were analyzed by SEM, Raman spectroscopy, tensile strength, water uptake tests and TEM. In summary, it has been demonstrated that damages occur in collagen fibers by the loss of bulk water of collagen structure implicating in a drastic decreasing of BP mechanical properties due to its structural alterations. Moreover, it was proven that the collagen fibrils suffered breakage at some points, which can be attributed to the uncontrolled parameters during drying. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
PEGylation is a successful strategy for improving the biochemical and biopharmaceutical properties of proteins and peptides through the covalent attachment of polyethylene glycol chains. In this work, purified recombinant uricase from Candida sp. (UC-r) was modified by PEGylation with metoxypolyethilenoglycol-p-nitrophenyl-carbonate (mPEG-pNP) and metoxypolyethyleneglycol-4,6-dichloro-s-triazine (mPEG-CN). The UC-r-mPEG-pNP and UC-r-mPEG-CN conjugates retained 87% and 75% enzyme activity respectively. The K(M) values obtained 2.7 x 10(-5) M (mPEG-pNP) or 3.0 x 10(-5) M (mPEG-CN) lot the conjugates as compared to 5.4 x 10(-5) M for the native UC-r, suggesting enhancement in the substrate affinity of the enzyme attached. The effects of pH and temperature on PEGylated UC-r indicated that the conjugates were more active at close physiological pH and were stable up to 70 degrees C. Spectroscopic study performed by circular dichroism at 20 degrees C and 50 degrees C did not show any relevant difference in protein structure between native and PEGylated UC-r. In rabbit and Balb/c mice, the native UC-r elicited an intense immune response being highly immunogenic. On the other hand, the PEGylated UC-r when injected chronically in mice did not induce any detectable antibody response. This indicates sufficient reduction of the immunogenicity this enzyme by mPEG-pNP or mPEG-CN conjugation, making it suitable for a possible therapeutical use. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chemical interesterification is an important technological option for the production of fats targeting commercial applications. Fat blends, formulated by binary blends of palm stearin and palm olein in different ratios, were subjected to chemical interesterification. The following determinations, before and after the interesterification reactions, were done: fatty acid composition, softening point, melting point, solid fat content and consistency. For the analytical responses a multiple regression statistical model was applied. This study has shown that blending and chemical interesterifications are an effective way to modify the physical and chemical properties of palm stearin, palm olein and their blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and palm olein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main goal of the present research effort was to evaluate the physical-chemical properties of blends of lard and soybean oil following enzymatic interesterification catalyzed by an immobilized lipase from Thermomyces lanuginosa (Lipozyme (TM) TL IM). Lipase-catalyzed interesterification produced new tri-acylglycerols that changed the physical-chemical properties of the fat blends under study. Solid fat content (31.3 vs 31.5 g/100 g), consistency (104.7 vs 167.6 kPa), crystallized area (0.6 vs 11.8) and softening point (31.8 vs 32.2 degrees C) of lard increased after interesterification, and this was mostly due to the increase of SSS (saturated) + SSU (disaturated-monounsaturated) triacylglycerols. These contents (SSU + SSS) increased in lard after interesterification from 42.9 to 46.7 g/100 g. The interesterified blends exhibited lower values for the physical properties when compared with their counterparts before enzymatic interesterification. The interesterification of blends of lard with soybean oil increased the amounts of UUU (triunsaturated) and SSS triacylglycerols and reduced the amounts of UUS (diunsaturated-monosaturated) triacylglycerols. The interesterified blends of lard and soybean oil demonstrated physical properties and chemical composition similar to human milk fat and they could be used for the production of a human milk fat substitute. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the viability of probiotic (Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp. lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp. bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt - Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4 degrees C. The product made with Y plus B. animalis subsp. lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp. bulgaricus were inhibited.