993 resultados para Stokes Wave


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green's functions for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity, affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of potential functions of two types of compressional waves to the Green's function, the squirt-flow length has a small effect, and the effects of viscoelastic parameter are mainly in the higher frequency range. Crown Copyright (C) 2006 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

文中证明了本文第二作者提出的简化Navier-Stokes(SNS)方程在层流边界层分离点数学上为正则.Davis和Голвачев-Куэьмин-Попов 提出的SNS方程在分离点为数学奇异.进而论证了文献[2,3]的SNS方程在层流边界层分离点的奇异阶.最后给出了Navier-Stokes方程、上述两种SNS方程以及边界层方程在分离点邻域特性的比较.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

通过考察各种典型粘性敏感流区的结构,分析粘性扩散项的量级大小层次,本文确立了简化Navier-Stokes方程的基本形式,并推诸一般附体坐标系,为简化Navier-Stokes方程的理论研究和一般应用提供了基础。

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文介绍绕圆柱的二阶Stokes波的简单计算方法,并将它与其他计算结果作比较。结果表明本方法有简单及足够的精度的优点。

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文从流场中空间和时间的尺度分析及流体力学基本方程组(BEFM)中诸项的量级分析出发,提出了BEFM的层次结构理论,表明:当特征雷诺数Re>l、且一坐标方向的长度尺度大于其它坐标方向的长度尺度吋,按照BEFM中诸项的量级关系,形成从Euler方程到 BEFM 和从边界层方程到 BEFM 的两支层次结构,文中以二维可压缩流动和不可压缩轴对称射流为例说明了两支层次结构的关系和特点,分析了诸层次方程组的特征、次特征(Subcharacteristics)以及它们的数学性质,并把诸层次方程组与已有的诸简化Navier-Stakes方程组(SNSE)作了对照比较。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文利用十一种简化 Navier-Stokes 方程(SNSE) 求解已知Navier-Stokes(NS)方程准确解的层射流流动,表明:多数SNSE~([1-6])的解与NS方程的准确解不一致;少数SNSE~([7,8])的解与NS方程的准确解一致,文中在射流的喉部和拐点位置,给出几种SNSE解与准确解的相对偏差,并把粘性及惯性诸项加以定量比较,强调指出:按照边界层理论量级分析为Re~(1/2)和Re~1量级的惯性项以及Re~(-1/2)量级的粘性项具有重要影响;据此从力学角度论证了简化 NS 方程时,保留全部惯性项和合理取舍粘性项的必要性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文在文献[1]的基础上,按照流场中长度尺度分布,惯性项与粘性项相对大小及数量级简化基本方程和划分流动区域的原则,给出:(1)可压缩绕球粘性流和射流的简化Navier-Stokes(NS)方程的层次结构和诸简化NS方程(SNSE),表明从边界层方程到NS方程和从Euler方程到NS方程的层次结构均包含十多种SNSE,但就SNSE的数学特征而言证明只有椭圆型,扩散抛物化和抛物型三类;(2)扩散抛物化方程(DPE)的数学特征与Euler方程一致,力学上表示扰动通过“压力梯度项”向上游传播,高阶扩散项“规定的”椭圆型下游效应可以忽略,故判断诸DPE优劣的标准应看能否准确计算压力场。(3)提出粘性流的多层结构模型,对绕固壁附近的流动为三层,即粘性层、过渡层和无粘层,给出了分层的准则;适用于三层的最简单和最重要的SNSE分别为边界层方程、诸层匹配(LsM)-SNSE和Euler方程;LsM-SNSE同时适用于三层、即适用于全流场,并可准确计算压力场。LsM-SNSE把两层、即内外层匹配SNSE推广为多层。(4)对平板绕流,给出附着流及分离流的新的三层结构,阐明了附着流三层向分离流三层过渡的力学特征。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文用W.H.Hui提出的方法,在半物理平面内重新表述了Stokes波的数学模型和边界条件,提出了两种更有效的数值计算方法来获得Stokes波高阶谐波系数,并可递推至无穷。通过小参数转换,重新得到了Cokelet(1977)的波速和半波高的摄动展开式。