1000 resultados para Statistical Thermodynamics
Resumo:
A configurational model for silicon oxide damaged after a high-dose ion implantation of a nonreactive species is presented. Based on statistics of silicon-centered tetrahedra, the model takes into account not only the closest environment of a given silicon atom, but also the second neighborhood, so it is specified whether the oxygen attached to one given silicon is bridging two tetrahedra or not. The frequencies and intensities of infrared vibrational bands have been calculated by averaging over the distributions and these results are in agreement with the ones obtained from infrared experimental spectra. Likewise, the chemical shifts obtained from x-ray photoelectron spectroscopy (XPS) analysis are similar to the reported values for the charge-transfer model of SiOx compounds.
Resumo:
We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
A general formulation of boundary conditions for semiconductor-metal contacts follows from a phenomenological procedure sketched here. The resulting boundary conditions, which incorporate only physically well-defined parameters, are used to study the classical unipolar drift-diffusion model for the Gunn effect. The analysis of its stationary solutions reveals the presence of bistability and hysteresis for a certain range of contact parameters. Several types of Gunn effect are predicted to occur in the model, when no stable stationary solution exists, depending on the value of the parameters of the injecting contact appearing in the boundary condition. In this way, the critical role played by contacts in the Gunn effect is clearly established.
Resumo:
A-1 - Monthly Public Assistance Statistical Report Family Investment Program
Resumo:
A-1 - Monthly Public Assistance Statistical Report Family Investment Program
Resumo:
Trees are a great bank of data, named sometimes for this reason as the "silentwitnesses" of the past. Due to annual formation of rings, which is normally influenced directly by of climate parameters (generally changes in temperature and moisture or precipitation) and other environmental factors; these changes, occurred in the past, are"written" in the tree "archives" and can be "decoded" in order to interpret what hadhappened before, mainly applied for the past climate reconstruction.Using dendrochronological methods for obtaining samples of Pinus nigra fromthe Catalonian PrePirineous region, the cores of 15 trees with total time spine of about 100 - 250 years were analyzed for the tree ring width (TRW) patterns and had quite high correlation between them (0.71 ¿ 0.84), corresponding to a common behaviour for the environmental changes in their annual growth.After different trials with raw TRW data for standardization in order to take outthe negative exponential growth curve dependency, the best method of doubledetrending (power transformation and smoothing line of 32 years) were selected for obtaining the indexes for further analysis.Analyzing the cross-correlations between obtained tree ring width indexes andclimate data, significant correlations (p<0.05) were observed in some lags, as forexample, annual precipitation in lag -1 (previous year) had negative correlation with TRW growth in the Pallars region. Significant correlation coefficients are between 0.27- 0.51 (with positive or negative signs) for many cases; as for recent (but very short period) climate data of Seu d¿Urgell meteorological station, some significant correlation coefficients were observed, of the order of 0.9.These results confirm the hypothesis of using dendrochronological data as aclimate signal for further analysis, such as reconstruction of climate in the past orprediction in the future for the same locality.
Resumo:
We have investigated the different contributions to the entropy change at the martensitic transition of different families of Cu-based shape-memory alloys. The total entropy change has been obtained through calorimetric measurements. By measuring the evolution of the magnetic susceptibility with temperature, the entropy change associated with conduction electrons has been evaluated. The contribution of the anharmonic vibrations of the lattice has also been estimated using various parameters associated with the anharmonic behavior of these alloys, collected from the literature. The results found in the present work have been compared to values published for the martensitic transition of group-IV metals. For Cu-based alloys, both electron and anharmonic contributions have been shown to be much smaller than the overall entropy change. This finding demonstrates that the harmonic vibrations of the lattice are the most relevant contribution to the stability of the bcc phase in Cu-based alloys.
Resumo:
Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.
Resumo:
Domain growth in a two-dimensional binary alloy is studied by means of Monte Carlo simulation of an ABV model. The dynamics consists of exchanges of particles with a small concentration of vacancies. The influence of changing the vacancy concentration and finite-size effects has been analyzed. Features of the vacancy diffusion during domain growth are also studied. The anomalous character of the diffusion due to its correlation with local order is responsible for the obtained fast-growth behavior.
Resumo:
A-1 - Monthly Public Assistance Statistical Report Family Investment Program
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.
Resumo:
An Ising-like model, with interactions ranging up to next-nearest-neighbor pairs, is used to simulate the process of interface alloying. Interactions are chosen to stabilize an intermediate "antiferromagnetic" ordered structure. The dynamics proceeds exclusively by atom-vacancy exchanges. In order to characterize the process, the time evolution of the width of the intermediate ordered region and the diffusion length is studied. Both lengths are found to follow a power-law evolution with exponents depending on the characteristic features of the model.