966 resultados para Stability test
Resumo:
Sol-gel synthesis in varied gravity is only a relatively new topic in the literature and further investigation is required to explore its full potential as a method to synthesise novel materials. Although trialled for systems such as silica, the specific application of varied gravity synthesis to other sol-gel systems such as titanium has not previously been undertaken. Current literature methods for the synthesis of sol-gel material in reduced gravity could not be applied to titanium sol-gel processing, thus a new strategy had to be developed in this study. To successfully conduct experiments in varied gravity a refined titanium sol-gel chemical precursor had to be developed which allowed the single solution precursor to remain un-reactive at temperatures up to 50oC and only begin to react when exposed to a pressure decrease from a vacuum. Due to the new nature of this precursor, a thorough characterisation of the reaction precursors was subsequently undertaken with the use of techniques such as Nuclear Magnetic Resonance, Infra-red and UV-Vis spectroscopy in order to achieve sufficient understanding of precursor chemistry and kinetic stability. This understanding was then used to propose gelation reaction mechanisms under varied gravity conditions. Two unique reactor systems were designed and built with the specific purpose to allow the effects of varied gravity (high, normal, reduced) during synthesis of titanium sol-gels to be studied. The first system was a centrifuge capable of providing high gravity environments of up to 70 g’s for extended periods, whilst applying a 100 mbar vacuum and a temperature of 40-50oC to the reaction chambers. The second system to be used in the QUT Microgravity Drop Tower Facility was also required to provide the same thermal and vacuum conditions used in the centrifuge, but had to operate autonomously during free fall. Through the use of post synthesis characterisation techniques such as Raman Spectroscopy, X-Ray diffraction (XRD) and N2 adsorption, it was found that increased gravity levels during synthesis, had the greatest effect on the final products. Samples produced in reduced and normal gravity appeared to form amorphous gels containing very small particles with moderate surface areas. Whereas crystalline anatase (TiO2), was found to form in samples synthesised above 5 g with significant increases in crystallinity, particle size and surface area observed when samples were produced at gravity levels up to 70 g. It is proposed that for samples produced in higher gravity, an increased concentration gradient of water is forms at the bottom of the reacting film due to forced convection. The particles formed in higher gravity diffuse downward towards this excess of water, which favours the condensation reaction of remaining sol gel precursors with the particles promoting increased particle growth. Due to the removal of downward convection in reduced gravity, particle growth due to condensation reaction processes are physically hindered hydrolysis reactions favoured instead. Another significant finding from this work was that anatase could be produced at relatively low temperatures of 40-50oC instead of the conventional method of calcination above 450oC solely through sol-gel synthesis at higher gravity levels. It is hoped that the outcomes of this research will lead to an increased understanding of the effects of gravity on chemical synthesis of titanium sol-gel, potentially leading to the development of improved products suitable for diverse applications such as semiconductor or catalyst materials as well as significantly reducing production and energy costs through manufacturing these materials at significantly lower temperatures.
Resumo:
In this article, we investigate experimentally whether people search optimally and how price promotions influence search behaviour. We implement a sequential search task with exogenous price dispersion in a baseline treatment and introduce discounts in two experimental treatments. We find that search behaviour is roughly consistent with optimal search but also observe some discount biases. If subjects do not know in advance where discounts are offered, the purchase probability is increased by 19 percentage points in shops with discounts, even after controlling for the benefit of the discount and for risk preferences. If consumers know in advance where discounts are given, then the bias is only weakly significant and much smaller (7 percentage points).
Resumo:
People's decision to join an organ donor registry and have a discussion with family about their organ donation preference increases the likelihood that their family will consent to donation of their organs. This study explores the effectiveness of three interventions compared to a control condition to increase individual consent (registering and discussing donation wishes) for organ donation. Australian residents who had not previously communicated their consent (N = 177) were randomly allocated to complete an online survey representing either an extended theory of planned behaviour motivational intervention (strengthening intention via attitudes, subjective norms, control, moral norms and identity), a volitional intervention using constructs from the health action process approach (strengthening the translation of intentions into action using action plans and coping plans), a combined motivational and volitional intervention, or a control condition. Registering, but not discussing, intentions increased in the motivational compared to non-motivational conditions. For joining the organ donor registry, the combination of strengthening intentions (motivational) as well as forming specific action (when, where, how, and with whom for discussing) and coping (listing potential obstacles and how these may be overcome) plans (volitional) resulted in significantly higher rates of self-reported behaviour. There was no evidence for this effect on discussion.
Resumo:
Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchangeand the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermo-gravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes thesurface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing ofthe interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three sur-factants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalatedinto Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailedconformational ordering of different intercalated long-chain surfactants under different conditions. Thewavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretch-ing mode to the mobility of the tail of the amine chain. At room temperature, the conformational orderingis more easily affected by the packing density in the lateral model. With the increase of the temperature,the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers,which indicates a decrease of conformational ordering. This study offers new insights into the struc-ture and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, theexperimental results confirm the potential applications of organic Ca-montmorillonites for the removalof organic impurities from aqueous media.
Resumo:
Transport related injury is a leading cause of death and disability for adolescents and represents a substantial burden on public health and the community as a whole. Adolescents appear to have a growing risk of harm due to the co-existence of increasing alcohol use and engagement in risky transport behaviours. Understanding more about the development and stability of these behaviours by young adolescents over time could be beneficial in targeting transport injury prevention interventions for high-risk adolescents. In Australia alcohol use begins to increase significantly through the early and middle adolescent years even though the majority of these young people are still in school. Aim This paper reports on changes over a six month period in alcohol use, anger management experiences and transport risk taking behaviours including riding a bicycle without a helmet and under-age driving for high-risk adolescents and non high-risk early adolescents. Year 9 students (N=1,005) from 20 schools in Queensland, Australia completed a baseline survey in the first half of 2012 and at a six month follow up. Respondents at both times were asked about their engagement in risk taking behaviours measured by Mak’s adolescent delinquency scale, which included five transport related items. They were also asked to rate their alcohol use for the preceding three month period. The stability of these risk taking indicators was measured by comparing baseline results with the six month follow up. Results High-risk adolescents were more likely to report change in their alcohol use and transport behaviours when compared with non high-risk adolescents over a six month period. There were no significant changes in control of anger for either group. Demographic characteristics were not shown to have any significant effect on the stability of risk indicators for high-risk adolescents and non high-risk adolescents. Differences were found in the stability of risk taking indicators for high-risk adolescents and non high-risk adolescents. The findings of this paper have implications in targeting transport risk behaviour change interventions to meet the needs of high-risk adolescents.
Resumo:
A new simple test method using small scale models has been developed for testing profiled steel cladding systems under wind uplift/suction forces. This simple method should replace the large scale test method using two-span claddings used at present. It can be used for roof or wall cladding systems fastened with screw fasteners at crests or valleys.
Resumo:
Geographical market expansion is included in various definitions of entrepreneurship as it entails the opening up of new markets (for example, Davidsson 2003). Expansion into new international markets and launch of new products in international markets are also consistent with definitions of entrepreneurship which center on the pursuit of opportunities {e.g.\Stevenson, 1983 #922;Gartner, 1993 #931}. Accordingly, the decision by managers of small, internationally active businesses to continue to internationalize can be viewed as an entrepreneurial act. In spite of the fact that both start-ups and existing firms can behave entrepreneurially by expanding into new international markets, the attention of entrepreneurship researchers interested in international activities has largely focused on international new ventures (INVs); that is, business organizations that internationalize from inception (Oviatt, and McDougall 1994; Oviatt, and McDougall 1997). Consequently, pursuit of international opportunities by established small and medium-sized enterprises (SMEs) lacks theoretical understanding and empirical investigation through an entrepreneurship lens. This paper contributes to the body of knowledge at the entrepreneurship-internationalization interface by testing whether Stevenson’s opportunity-based conceptualization of entrepreneurial management (Stevenson 1983; Stevenson and Gumpert 1985; Stevenson and Jarillo 1990) can explain the attainment of continued entrepreneurial outcomes by SMEs operating in foreign markets. We choose Stevenson’s conceptualization as it gauges firm-level characteristics that are theorized to facilitate the pursuit of entrepreneurial opportunities, which arguably is at the heart of SMEs’ continued venturing into international markets.
Resumo:
A new bioluminescent creatine kinase (CK) assay using purified luciferase was used to analyse CK activity in serum samples dried on filter paper. Enzyme activity was preserved for over 1 wk on paper stored at room temperature. At 60°C, CK activity in liquid serum samples was rapidly inactivated, but the activity of enzyme stored on paper was preserved for at least 2 days.
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.
Resumo:
The inconsistent findings of past board diversity research demand a test of competing linear and curvilinear diversity–performance predictions. This research focuses on board age and gender diversity, and presents a positive linear prediction based on resource dependence theory, a negative linear prediction based on social identity theory, and an inverted U-shaped curvilinear prediction based on the integration of resource dependence theory with social identity theory. The predictions were tested using archival data on 288 large organizations listed on the Australian Securities Exchange, with a 1-year time lag between diversity (age and gender) and performance (employee productivity and return on assets). The results indicate a positive linear relationship between gender diversity and employee productivity, a negative linear relationship between age diversity and return on assets, and an inverted U-shaped curvilinear relationship between age diversity and return on assets. The findings provide additional evidence on the business case for board gender diversity and refine the business case for board age diversity.
Resumo:
This paper proposes a new controller for the excitation system to improve rotor angle stability. The proposed controller uses energy function to predict desired flux for the generator to achieve improved first swing stability and enhanced system damping. The controller is designed through predicting the desired value of flux for the future step of the system and then obtaining appropriate supplementary control input for the excitation system. The simulations are performed on Single-Machine-Infinite-Bus system and the results verify the efficiency of the controller. The proposed method facilitates the excitation system with a feasible and reliable controller for severe disturbances.
Resumo:
The pull-through/local dimpling failure strength of screwed connections is very important in the design of profiled steel cladding systems to help them resist storms and hurricanes. The current American and European provisions recommend four different test methods for the screwed connections in tension, but the accuracy of these methods in determining the connection strength is not known. It is unlikely that the four test methods are equivalent in all cases and thus it is necessary to reduce the number of methods recommended. This paper presents a review of these test methods based on some laboratory tests on crest- and valley-fixed claddings and then recommends alternative tests methods that reproduce the real behavior of the connections, including the bending and membrane deformations of the cladding around the screw fasteners and the tension load in the fastener.
Resumo:
Diagnosis threat is a psychosocial factor that has been proposed to contribute to poor outcomes following mild traumatic brain injury (mTBI). This threat is thought to impair the cognitive test performance of individuals with mTBI because of negative injury stereotypes. University students (N= 45, 62.2% female) with a history of mTBI were randomly allocated to a diagnosis threat (DT, n=15), reduced threat (DT-reduced, n=15) or neutral (n=15) group. The reduced threat condition invoked a positive stereotype (i.e., that people with mTBI can perform well on cognitive tests). All participants were given neutral instructions before they completed baseline tests of: a) objective cognitive function across a number of domains; b) psychological symptoms; and, c) PCS symptoms, including self-reported cognitive and emotional difficulties. Participants then received either neutral, DT or DT-reduced instructions, before repeating the tests. Results were analyzed using separate mixed model ANOVAs; one for each dependent measure. The only significant result was for the 2 X 3 ANOVA on an objective test of attention/working memory, Digit Span, p<.05, such that the DT-reduced group performed better than the other groups, which were not different from each other. Although not consistent with predictions or earlier DT studies, the absence of group differences on most tests fits with several recent DT findings. The results of this study suggest that it is timely to reconsider the role of DT as a unique contributor to poor mTBI outcome.