547 resultados para Spinor condensate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the pure spinor formalism, a quantizable sigma model has been constructed for the superstring in an AdS(5) X S-5 background with manifest PSU(2,2 vertical bar 4) invariance. The PSU(2,2 vertical bar 4) metric g(AB) has both vector components gab and spinor components g, 3, and in the limit where the spinor components g, 3 are taken to infinity, the AdS5 X S5 sigma model reduces to the worldsheet action in a flat background. In this paper, we instead consider the limit where the vector components g(ab) are taken to infinity. In this limit, the AdS5 X S5 sigma model simplifies to a topological A-model constructed from fermionic N=2 superfields whose bosonic components transform like twistor variables. Just as d=3 Chern-Simons theory can be described by the open string sector of a topological A-model, the open string sector of this topological A-model describes d=4 N=4 super-Yang-Mills. These results might be useful for constructing a worldsheet proof of the Maldacena conjecture analogous to the Gopakumar-Vafa-Ooguri worldsheet proof of Chern-Simons/conifold duality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the pure spinor formalism of the superstring. We systematically study the prescription for tree level amplitudes in this formalism. We discuss briefly the superstring in Ad'S IND 5' x 'S POT 5'

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a superfluid cloud composed of a Bose-Einstein condensate oscillating within a magnetic trap (dipole mode) where, due to the existence of a Feshbach resonance, an effective periodic time-dependent modulation in the scattering length is introduced. Under this condition, collective excitations such as the quadrupole mode can take place. We approach this problem by employing both the Gaussian and the Thomas-Fermi variational Ansatze. The resulting dynamic equations are analyzed by considering both linear approximations and numerical solutions, where we observe coupling between dipole and quadrupole modes. Aspects of this coupling related to the variation of the dipole oscillation amplitude are analyzed. This may be a relevant effect in situations where oscillation in a magnetic field in the presence of a bias field B takes place, and should be considered in the interpretation of experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matter-wave superradiance is based on the interplay between ultracold atoms coherently organized in momentum space and a backscattered wave. Here, we show that this mechanism may be triggered by Mie scattering from the atomic cloud. We show how the laser light populates the modes of the cloud and thus imprints a phase gradient on the excited atomic dipoles. The interference with the atoms in the ground state results in a grating that in turn generates coherent emission, contributing to the backward light wave onset. The atomic recoil "halos" created by the Mie-scattered light exhibit a strong anisotropy, in contrast to single-atom scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous work El et al. (2006) [1] exact stable oblique soliton solutions were revealed in two-dimensional nonlinear Schrodinger flow. In this work we show that single soliton solution can be expressed within the Hirota bilinear formalism. An attempt to build two-soliton solutions shows that the system is "close" to integrability provided that the angle between the solitons is small and/or we are in the hypersonic limit. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A correlated two-body basis function is used to describe the three-dimensional bosonic clusters interacting via two-body van der Waals potential. We calculate the ground state and the zero orbital angular momentum excited states for Rb-N clusters with up to N = 40. We solve the many-particle Schrodinger equation by potential harmonics expansion method, which keeps all possible two-body correlations in the calculation and determines the lowest effective many-body potential. We study energetics and structural properties for such diffuse clusters both at dimer and tuned scattering length. The motivation of the present study is to investigate the possibility of formation of N-body clusters interacting through the van der Waals interaction. We also compare the system with the well studied He, Ne, and Ar clusters. We also calculate correlation properties and observe the generalised Tjon line for large cluster. We test the validity of the shape-independent potential in the calculation of the ground state energy of such diffuse cluster. These are the first such calculations reported for Rb clusters. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730972]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The existence and stability of three-dimensional (3D) solitons, in cross-combined linear and nonlinear optical lattices, are investigated. In particular, with a starting optical lattice (OL) configuration such that it is linear in the x-direction and nonlinear in the y-direction, we consider the z-direction either unconstrained (quasi-2D OL case) or with another linear OL (full 3D case). We perform this study both analytically and numerically: analytically by a variational approach based on a Gaussian ansatz for the soliton wavefunction and numerically by relaxation methods and direct integrations of the corresponding Gross-Pitaevskii equation. We conclude that, while 3D solitons in the quasi-2D OL case are always unstable, the addition of another linear OL in the z-direction allows us to stabilize 3D solitons both for attractive and repulsive mean interactions. From our results, we suggest the possible use of spatial modulations of the nonlinearity in one of the directions as a tool for the management of stable 3D solitons.