996 resultados para Sound propagation
Solar flare particle propagation--comparison of a new analytic solution with spacecraft measurements
Resumo:
A new analytic solution has been obtained to the complete Fokker-Planck equation for solar flare particle propagation including the effects of convection, energy-change, corotation, and diffusion with ĸr = constant and ĸƟ ∝ r2. It is assumed that the particles are injected impulsively at a single point in space, and that a boundary exists beyond which the particles are free to escape. Several solar flare particle events have been observed with the Caltech Solar and Galactic Cosmic Ray Experiment aboard OGO-6. Detailed comparisons of the predictions of the new solution with these observations of 1-70 MeV protons show that the model adequately describes both the rise and decay times, indicating that ĸr = constant is a better description of conditions inside 1 AU than is ĸr ∝ r. With an outer boundary at 2.7 AU, a solar wind velocity of 400 km/sec, and a radial diffusion coefficient ĸr ≈ 2-8 x 1020 cm2/sec, the model gives reasonable fits to the time-profile of 1-10 MeV protons from "classical" flare-associated events. It is not necessary to invoke a scatter-free region near the sun in order to reproduce the fast rise times observed for directly-connected events. The new solution also yields a time-evolution for the vector anisotropy which agrees well with previously reported observations.
In addition, the new solution predicts that, during the decay phase, a typical convex spectral feature initially at energy To will move to lower energies at an exponential rate given by TKINK = Toexp(-t/ƬKINK). Assuming adiabatic deceleration and a boundary at 2.7 AU, the solution yields ƬKINK ≈ 100h, which is faster than the measured ~200h time constant and slower than the adiabatic rate of ~78h at 1 AU. Two possible explanations are that the boundary is at ~5 AU or that some other energy-change process is operative.
Resumo:
A relatively simple transform from an arbitrary solution of the paraxial wave equation to the corresponding exact solution of the Helmholtz wave equation is derived in the condition that the evanescent waves are ignored and is used to study the corrections to the paraxial approximation of an arbitrary free-propagation beam. Specifically, the general lowest-order correction field is given in a very simple form and is proved to be exactly consistent with the perturbation method developed by Lax et nl. [Phys. Rev. A 11, 1365 (1975)]. Some special examples, such as the lowest-order correction to the paraxial approximation of a fundamental Gaussian beam whose waist plane has a parallel shin from the z = 0 plane, are presented. (C) 1998 Optical Society of America.
Resumo:
The present project aims to describe and study the nature and transmission of nerve pulses. First we review a classical model by Hodgkin-Huxley which describes the nerve pulse as a pure electric signal which propagates due to the opening of some time- and voltage-dependent ion channels. Although this model was quite successful when introduced, it fails to provide a satisfactory explanation to other phenomena that occur in the transmission of nerve pulses, therefore a new theory seems to be necessary. The soliton theory is one such theory, which we explain after introducing two topics that are important for its understanding: (i) the lipid melting of membranes, which are found to display nonlinearity and dispersion during the melting transition, and (ii) the discovery and the conditions required for the existence of solitons. In the soliton theory, the pulse is presented as an electromechanical soliton which forces the membrane through the transition while propagating. The action of anesthesia is also explained in the new framework by the melting point depression caused by anesthetics. Finally, we present a comparison between the two models.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
The propagation of flat-topped beams passing through paraxial ABCD optical system is investigated based on the propagation formulas of Gaussian beam. The focal shift of focused coherent flat-topped beam is also studied in detail. Analytical expressions of the M-2 factor and the far-field intensity distribution for flat-topped beams are derived on the basis of second-order moments. (C) 2007 Elsevier Ltd. All rights reserved.