957 resultados para Solid-phase Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyridylkomplexe von Ruthenium(II) besitzen eine Vielzahl von Anwendungen, z. B. in Farbstoff-sensibilisierten Solarzellen und als Photokatalysatoren. [Ru(bpy)3]2+ ist einer der prominentesten Ruthenium(II)-Komplexe und besitzt langlebige angeregte 3MLCT-Zustände mit einer Lebensdauer von 1 µs und einer Lumineszenz-Quantenausbeute von 10%. [Ru(bpy)3]2+ ist chiral und kann Stereoisomere bilden, wenn die Liganden unsymmetrisch substituiert sind oder im Falle von oligonuklearen rac/meso-Komplexen. Bis-tridentate Komplexe wie [Ru(tpy)2]2+ sind achiral und umgehen damit unerwünschte Stereoisomere. [Ru(tpy)2]2+ besitzt jedoch enttäuschende photophysikalische Eigenschaften mit einer 3MLCT-Lebensdauer von nur etwa 0.2 ns und einer Quantenausbeute von ≤ 0.0007%. Die Anbringung von Substituenten an [Ru(tpy)2]2+ sowie die Aufweitung der Liganden-Bisswinkel auf 90° bewirken deutlich verbesserte Eigenschaften der emittierenden 3MLCT-Zustände. rnDieser Strategie folgend wurden in der vorliegenden Arbeit neue bis-tridentate Ruthenium(II)-Komplexe entwickelt, synthetisiert und charakterisiert. Durch Anbringen von Ester-Substituenten und Verwenden von Liganden mit erweiterten Bisswinkeln konnten 3MLCT-Lebensdauern von bis zu 841 ns und Quantenausbeuten von bis zu 1.1% erreicht werden. Die neuen bis-tridentaten Komplexe weisen eine deutlich erhöhte Photostabilität im Vergleich zu tris-bidentatem [Ru(bpy)3]2+ auf. rnDie Komplexe wurden als Emitter in Licht-emittierenden elektrochemischen Zellen eingebaut und zeigen Elektrolumineszenz mit einer tiefroten Farbe, die bis ins NIR reicht. Ebenso wurden die Komplexe als Lichtsammler in Farbstoff-sensibilisierten Solarzellen getestet und erreichen Licht-zu-Energie-Effizienzen von bis zu 0.26%. rnDinukleare, stereochemisch einheitliche Ruthenium(II)-Komplexe wurden oxidiert um die Metall-Metall-Wechselwirkung zwischen Ru(II) und Ru(III) in der einfach oxidierten Spezies zu untersuchen. Die unterschiedlichen Redoxeigenschaften der beiden Rutheniumzentren in den verwendeten dinuklearen Verbindungen führt zu einer valenzlokalisierten Situation in der keine Metall-Metall-Wechselwirkung beobachtet wird. Ebenso wurde die Oxidation eines einkernigen Ruthenium(II)-Komplexes sowie dessen spontane Rückreduktion untersucht.rnEnergietransfersysteme wurden mittels Festphasensynthese hergestellt. Dabei ist ein Bis(terpyridin)ruthenium(II)-Komplex als Energie-Akzeptor über eine unterschiedliche Anzahl an Glycineinheiten mit einem Cumarin-Chromophor als Energie-Donor verknüpft. Bei einer kleinen Zahl an Glycineinheiten (0, 1) findet effektiver Energietransfer vom Cumarin- zum Ruthenium-Chromophor statt, wogegen bei zwei Glycineinheiten ein effektiver Energietransfer verhindert ist.rnLicht-induzierte Ladungstrennung wurde erreicht, indem Bis(terpyridin)ruthenium(II)-Komplexe als Chromophore in einem Donor-Chromophor-Akzeptor-Nanokomposit eingesetzt wurden. Dabei wurde ein Triphenylamin-enthaltendes Blockcopolymer als Elektronendonor und ZnO-Nanostäbchen als Elektronenakzeptor verwendet. Bei Bestrahlung des Chromophors werden Elektronen in die ZnO-Nanostäbchen injiziert und die Elektronenlöcher wandern in das Triphenylamin-enthaltende Blockcopolymer. rnrn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiolabeled somatostatin analogues have been successfully used for targeted radiotherapy and for imaging of somatostatin receptor (sst1-5)-positive tumors. Nevertheless, these analogues are subject to improving their tumor-to-nontarget ratio to enhance their diagnostic or therapeutic properties, preventing nephrotoxicity. In order to understand the influence of lipophilicity and charge on the pharmacokinetic profile of [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)]-somatostatin-based radioligands such as [DOTA,1-Nal3]-octreotide (DOTA-NOC), different spacers (X) based on 8-amino-3,6-dioxaoctanoic acid (PEG2), 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG4), N-acetyl glucosamine (GlcNAc), triglycine, beta-alanine, aspartic acid, and lysine were introduced between the chelator DOTA and the peptide NOC. All DOTA-X-NOC conjugates were synthesized by Fmoc solid-phase synthesis. The partition coefficient (log D) at pH = 7.4 indicated that higher hydrophilicity than [111In-DOTA]-NOC was achieved with the introduction of the mentioned spacers, except with triglycine and beta-alanine. The high affinity of [InIII-DOTA]-NOC for human sst2 (hsst2) was preserved with the structural modifications, while an overall drop for hsst3 affinity was observed, except in the case of [InIII-DOTA]-beta-Ala-NOC. The new conjugates preserved the good affinity for hsst5, except for [InIII-DOTA]-Asn(GlcNAc)-NOC, which showed decreased affinity. A significant 1.2-fold improvement in the specific internalization rate in AR4-2J rat pancreatic tumor cells (sst2 receptor expression) at 4 h was achieved with the introduction of Asp as a spacer in the parent compound. In sst3-expressing HEK cells, the specific internalization rate at 4 h for [111In-DOTA]-NOC (13.1% +/- 0.3%) was maintained with [111In-DOTA]-beta-Ala-NOC (14.0% +/- 1.8%), but the remaining derivatives showed <2% specific internalization. Biodistribution studies were performed with Lewis rats bearing the AR4-2J rat pancreatic tumor. In comparison to [111In-DOTA]-NOC (2.96% +/- 0.48% IA/g), the specific uptake in the tumor at 4 h p.i. was significantly improved for the 111In-labeled sugar analogue (4.17% +/- 0.46% IA/g), which among all the new derivatives presented the best tumor-to-kidney ratio (1.9).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic oligonucleotides and peptides have found wide applications in industry and academic research labs. There are ~60 peptide drugs on the market and over 500 under development. The global annual sale of peptide drugs in 2010 was estimated to be $13 billion. There are three oligonucleotide-based drugs on market; among them, the FDA newly approved Kynamro was predicted to have a $100 million annual sale. The annual sale of oligonucleotides to academic labs was estimated to be $700 million. Both bio-oligomers are mostly synthesized on automated synthesizers using solid phase synthesis technology, in which nucleoside or amino acid monomers are added sequentially until the desired full-length sequence is reached. The additions cannot be complete, which generates truncated undesired failure sequences. For almost all applications, these impurities must be removed. The most widely used method is HPLC. However, the method is slow, expensive, labor-intensive, not amendable for automation, difficult to scale up, and unsuitable for high throughput purification. It needs large capital investment, and consumes large volumes of harmful solvents. The purification costs are estimated to be more than 50% of total production costs. Other methods for bio-oligomer purification also have drawbacks, and are less favored than HPLC for most applications. To overcome the problems of known biopolymer purification technologies, we have developed two non-chromatographic purification methods. They are (1) catching failure sequences by polymerization, and (2) catching full-length sequences by polymerization. In the first method, a polymerizable group is attached to the failure sequences of the bio-oligomers during automated synthesis; purification is achieved by simply polymerizing the failure sequences into an insoluble gel and extracting full-length sequences. In the second method, a polymerizable group is attached to the full-length sequences, which are then incorporated into a polymer; impurities are removed by washing, and pure product is cleaved from polymer. These methods do not need chromatography, and all drawbacks of HPLC no longer exist. Using them, purification is achieved by simple manipulations such as shaking and extraction. Therefore, they are suitable for large scale purification of oligonucleotide and peptide drugs, and also ideal for high throughput purification, which currently has a high demand for research projects involving total gene synthesis. The dissertation will present the details about the development of the techniques. Chapter 1 will make an introduction to oligodeoxynucleotides (ODNs), their synthesis and purification. Chapter 2 will describe the detailed studies of using the catching failure sequences by polymerization method to purify ODNs. Chapter 3 will describe the further optimization of the catching failure sequences by polymerization ODN purification technology to the level of practical use. Chapter 4 will present using the catching full-length sequence by polymerization method for ODN purification using acid-cleavable linker. Chapter 5 will make an introduction to peptides, their synthesis and purification. Chapter 6 will describe the studies using the catching full-length sequence by polymerization method for peptide purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self – assembly is a powerful tool for the construction of highly organized nanostructures. Therefore, the possibility to control and predict pathways of molecular ordering on the nanoscale level is a critical issue for the production of materials with tunable and adaptive macroscopic properties. 2D polymers are attractive objects for the field of material sciences due to their exceptional properties. [1] As shown before, amphiphilic oligopyrenotides (produced via automated solid-phase synthesis) form rod–like supramolecular polymers in water. [2] These assemblies form 1D objects. [3] By applying certain changes to the design of the oligopyrenotide units the dimensionality of the formed assemblies can be influenced. Herein, we demonstrate that Py3 (see Figure 1) forms defined supramolecular assemblies under thermodynamic conditions in water. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM). The obtained results suggest that oligopyrenotides with the present type of geometry and linker length leads to formation of 2D supramolecular assemblies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION The gastrin-releasing peptide receptor (GRPR) was shown to be expressed with high density on several types of cancers. Radiolabeled peptides for imaging and targeted radionuclide therapy have been developed. In this study, we evaluated the potential of statine-based bombesin antagonists, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) through oligoethyleneglycol spacers, labeled with (177)Lu and we determined the effect of polyethyleneglycol (PEG) spacer length on in vitro and in vivo properties. METHODS The bombesin antagonists were synthesized on solid phase using Fmoc chemistry; the spacers Fmoc-dPEGx-OH (x=2, 4, 6 and 12) and the DOTA(tBu)3 were coupled using a standard procedure. The peptides were labeled with (177)Lu and evaluated in vitro (lipophilicity, serum stability, internalization and binding affinity assays). Biodistribution studies were performed in PC-3 tumor-bearing nude mice. RESULTS The solid-phase synthesis was straightforward with an overall yield ranging from 30% to 35% based on the first Fmoc cleavage. The hydrophilicity increased with spacer length (logD: -1.95 vs -2.22 of PEG2 and PEG12 analogs, respectively). There is a tendency of increased serum stability by increasing the spacer length (T1/2=246±4 and 584±20 for PEG2 and PEG6 analogs, respectively) which seems to reverse with the PEG12 analog. The IC50 values are similar with the only significant difference of the PEG12 analog. The (177)Lu-labeled PEG4 and PEG6 conjugates showed similar pharmacokinetic with high tumor uptake and excellent tumor-to-kidney ratios (7.8 and 9.7 at 4h for the PEG4 and PEG6 derivatives, respectively). The pancreas uptake was relatively high at 1h but it shows fast washout (0.46%±0.02% IA/g and 0.29%±0.08% IA/g already at 4h). CONCLUSION Among all the studied analogs the PEG4 and PEG6 showed significantly better properties. The very high tumor-to-non-target organ ratios, in particular tumor-to-kidney ratios, already at early time point will be important in regard to safety concerning kidney toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved strategies for synthesis make it possible to expand the range of glycopeptides available for detailed conformational studies. The glycopeptide 1 was synthesized using a new solid phase synthesis of carbohydrates and a convergent coupling to peptide followed by deprotection. Its conformational properties were subjected to NMR analysis and compared with a control peptide 2 prepared by conventional solid phase methods. Whereas peptide 2 fails to manifest any appreciable secondary structure, the glycopeptide 1 does show considerable conformational bias suggestive of an equilibrium between an ordered and a random state. The implications of this ordering effect for the larger issue of protein folding are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organosilica microspheres synthesised via a novel surfactant-free emulsion-based method show applicability towards optical encoding, solid-phase synthesis and high-throughput screening of bound oligonucleotide and peptide sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel member of the human relaxin subclass of the insulin superfamily was recently discovered during a genomics database search and named relaxin-3. Like human relaxin-1 and relaxin-2, relaxin-3 is predicted to consist of a two-chain structure and three disulfide bonds in a disposition identical to that of insulin. To undertake detailed biophysical and biological characterization of the peptide, its chemical synthesis was undertaken. In contrast to human relaxin-1 and relaxin-2, however, relaxin-3 could not be successfully prepared by simple combination of the individual chains, thus necessitating recourse to the use of a regioselective disulfide bond formation strategy. Solid phase synthesis of the separate, selectively S-protected A and B chains followed by their purification and the subsequent stepwise formation of each of the three disulfides led to the successful acquisition of human relaxin-3. Comprehensive chemical characterization confirmed both the correct chain orientation and the integrity of the synthetic product. Relaxin-3 was found to bind to and activate native relaxin receptors in vitro and stimulate water drinking through central relaxin receptors in vivo. Recent studies have demonstrated that relaxin-3 will bind to and activate human LGR7, but not LGR8, in vitro. Secondary structural analysis showed it to adopt a less ordered confirmation than either relaxin-1 or relaxin-2, reflecting the presence in the former of a greater percentage of nonhelical forming amino acids. NMR spectroscopy and simulated annealing calculations were used to determine the three-dimensional structure of relaxin-3 and to identify key structural differences between the human relaxins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new safety-catch linker for Fmoc solid-phase peptide synthesis of cyclic peptides is reported. The linear precursors were assembled on a tert-butyl protected catechol derivative using optimized conditions for Fmoc-removal. After activation of the linker using TFA, neutralization of the N-terminal amine induced cyclization with concomitant cleavage from the resin yielding the cyclic peptides in DMF solution. Several constrained cyclic peptides were synthesized in excellent yields and purities. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptidyl privileged structures have been widely used by many groups to discover biologically active molecules. In this context, privileged substructures are used as hydrophobic anchors, to which peptide functionality is appended to gain specificity. Utilization of this concept has led to the discovery of many different active compounds at a wide range of biological receptors. A synthetic approach to these compounds has been developed on a safety-catch linker that allows rapid preparation of large libraries of these molecules. Importantly, amide bond formation/cleavage through treatment with amines is the final step; it is a linker strategy that allows significant diversification to be easily incorporated, and it only requires the inclusion of an amide bond. In addition, chemistry has been developed that permits the urea moiety to be inserted at the N-terminus of the peptide, allowing the same set of amines (either privileged substructures or amino acid analogues) to be used at both the N- and C-termini of the molecule. To show the robustness of this approach, a small library of peptidyl privileged structures were synthesized, illustrating that large combinatorial libraries can be synthesized using these technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic pentapepticles are not known to exist in a-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapepticles, Ac-(cyclo-1,5) [KxxxD]-NH2 and Ac-(cyclo-2,6)R[KxxxD]-NH2, are highly a-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest a-helical peptides in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and non-reducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one([ Sec(2,8)] ImI or [Sec(3,12)] ImI), or both([Sec(2,3,8,12)] ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha(7) nicotinic acetylcholine receptor, with each seleno-analogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.