865 resultados para Solar-system
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica
Resumo:
Neste trabalho é efetuado o dimensionamento de sistemas fotovoltaicos para serem instalados em edificações localizadas em Angola com o objetivo de analisar a produção de energia elétrica através de sistemas fotovoltaicos. Utilizando o software PVsyst na versão 6.3.2 foram dimensionados três sistemas fotovoltaicos, dois sistemas destinados a ser instalados numa residência, um ligado à rede e o outro autónomo e por fim um sistema fotovoltaico ligado à rede para uma instalação industrial. A determinação dos custos de investimento nos três sistemas foi obtida de forma aproximada, tendo como base preços dos equipamentos no mercado Português e considerando os custos de importação de mercadorias no mercado Angolano. Para os sistemas ligados à rede é analisada a rentabilidade financeira do investimento durante o período de vida útil dos módulos fotovoltaicos considerando três cenários distintos. No primeiro cenário o valor da remuneração pela energia vendida pelo produtor é igual ao valor pago pela energia comprada. No segundo e terceiros cenário de análise económica pretende-se encontrar uma tarifa de energia que torne o investimento rentável com um período de amortização de 7 e 12 anos respetivamente.
Estudo de uma bomba de calor de expansão direta assistida por energia solar para a preparação de AQS
Resumo:
Este estudo consiste na caracterização da eficiência energética de uma bomba de calor de expansão direta que utiliza a energia solar como fonte térmica. De uma forma geral, teve-se a obrigação de procurar cada vez mais recursos renováveis e neste sentido a bomba de calor de expansão direta tem um papel importante no aquecimento de águas quentes sanitárias (AQS). Como ponto de partida, foi realizada uma descrição detalhada sobre todos os equipamentos da bomba de calor e elaborado um desenho técnico que identifica todos os componentes. No laboratório (casa inteligente) realizaram-se vários ensaios a fim de interpretar com rigor os resultados obtidos do desempenho da bomba de calor (COP) e do fator médio de desempenho sazonal (SPF). No início, realizaram-se ensaios para determinar as perdas estáticas do sistema termodinâmico, de seguida foram elaborados ensaios segundo a norma EN 16147 e por fim, ensaios de acordo com o perfil de utilização de AQS definido. No estudo experimental do COP, obteve-se uma elevada eficiência energética com um valor médio de 4,12. O COP aumenta para valores médios de 5 quando a temperatura de água no termoacumulador desce para 35ºC. Verificou-se que durante o período diurno o COP aumenta aproximadamente de 10% relativamente ao período noturno. A potência elétrica é mais elevada (450W) quando a água no termoacumulador está perto da temperatura desejável (55ºC), originando um esforço maior da bomba de calor. No estudo experimental do SPF, verificou-se que nos ensaios segundo a norma EN16147 os valores obtidos variaram entre 1,39 e 1,50 (Classe “B”). No estudo realizado de acordo com o perfil de utilização de AQS definido pelo utilizador, o SPF é superior em 12% relativamente ao obtido segundo os ensaios realizados de acordo a norma EN16147. Verificou-se que o aumento da temperatura do ar exterior implica um aumento do SPF (cerca de 2% a 5%), enquanto a energia solar não influência nos resultados.
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.
Resumo:
Aim of the present work was to automate CSP process, to deposit and characterize CuInS2/In2S3 layers using this system and to fabricate devices using these films.An automated spray system for the deposition of compound semiconductor thin films was designed and developed so as to eliminate the manual labour involved in spraying and facilitate standardization of the method. The system was designed such that parameters like spray rate, movement of spray head, duration of spray, temperature of substrate, pressure of carrier gas and height of the spray head from the substrate could be varied. Using this system, binary, ternary as well as quaternary films could be successfully deposited.The second part of the work deal with deposition and characterization of CuInS2 and In2S3 layers respectively.In the case of CuInS2 absorbers, the effects of different preparation conditions and post deposition treatments on the optoelectronic, morphological and structural properties were investigated. It was observed that preparation conditions and post deposition treatments played crucial role in controlling the properties of the films. The studies in this direction were useful in understanding how the variation in spray parameters tailored the properties of the absorber layer. These results were subsequently made use of in device fabrication process.Effects of copper incorporation in In2S3 films were investigated to find how the diffusion of Cu from CuInS2 to In2S3 will affect the properties at the junction. It was noticed that there was a regular variation in the opto-electronic properties with increase in copper concentration.Devices were fabricated on ITO coated glass using CuInS2 as absorber and In2S3 as buffer layer with silver as the top electrode. Stable devices could be deposited over an area of 0.25 cm2, even though the efficiency obtained was not high. Using manual spray system, we could achieve devices of area 0.01 cm2 only. Thus automation helped in obtaining repeatable results over larger areas than those obtained while using the manual unit. Silver diffusion on the cells before coating the electrodes resulted in better collection of carriers.From this work it was seen CuInS2/In2S3 junction deposited through automated spray process has potential to achieve high efficiencies.
Resumo:
The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal.
Resumo:
This study investigated the enhancement of solar disinfection using custom-made batch reactors with reflective (foil-backed) or absorptive (black-backed) rear surfaces, under a range of weather conditions in India. Plate counts of Escherichia coli ATCC11775 were made under aerobic conditions and under conditions where reactive oxygen species (ROS) were neutralised, i.e. in growth medium supplemented with 0.05% w/v sodium pyruvate plus incubation under anaerobic conditions. While the addition of either an absorptive or a reflective backing enhanced reactor performance under strong sunlight, the reflective reactor was the only system to show consistent enhancement under low sunlight, where the process was slowest. Counts performed under ROS-neutralised conditions were slightly higher than those in air, indicating that a fraction of the cells become sub-lethally injured during exposure to sunlight to the extent that they were unable to grow aerobically. However, the influence of this phenomenon on the dynamics of inactivation was relatively small
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.
Resumo:
Space weather effects on technological systems originate with energy carried from the Sun to the terrestrial environment by the solar wind. In this study, we present results of modeling of solar corona-heliosphere processes to predict solar wind conditions at the L1 Lagrangian point upstream of Earth. In particular we calculate performance metrics for (1) empirical, (2) hybrid empirical/physics-based, and (3) full physics-based coupled corona-heliosphere models over an 8-year period (1995–2002). L1 measurements of the radial solar wind speed are the primary basis for validation of the coronal and heliosphere models studied, though other solar wind parameters are also considered. The models are from the Center for Integrated Space-Weather Modeling (CISM) which has developed a coupled model of the whole Sun-to-Earth system, from the solar photosphere to the terrestrial thermosphere. Simple point-by-point analysis techniques, such as mean-square-error and correlation coefficients, indicate that the empirical coronal-heliosphere model currently gives the best forecast of solar wind speed at 1 AU. A more detailed analysis shows that errors in the physics-based models are predominately the result of small timing offsets to solar wind structures and that the large-scale features of the solar wind are actually well modeled. We suggest that additional “tuning” of the coupling between the coronal and heliosphere models could lead to a significant improvement of their accuracy. Furthermore, we note that the physics-based models accurately capture dynamic effects at solar wind stream interaction regions, such as magnetic field compression, flow deflection, and density buildup, which the empirical scheme cannot.
Resumo:
Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is often naively assumed that changes in this solar output must be responsible for changes in Earth’s climate. However, the Sun is close to a blackbody radiator and so emits according to its surface temperature and the huge thermal time constant of the outer part of the Sun limits the variability in surface temperature and hence output. As a result, on all timescales of interest, changes in total power output are limited to small changes in effective surface temperature (associated with magnetic fields) and potential, although as yet undetected, solar radius variations. Larger variations are seen in the UV part of the spectrum which is emitted from the lower solar atmosphere (the chromosphere) and which influences Earth’s stratosphere. There is interest in“top-down” mechanisms whereby solar UV irradiance modulates stratospheric temperatures and winds which, in turn, may influence the underlying troposphere where Earth’s climate and weather reside. This contrasts with “bottom-up” effects in which the small total solar irradiance (dominated by the visible and near-IR) variations cause surface temperature changes which drive atmospheric circulations. In addition to these electromagnetic outputs, the Sun modulates energetic particle fluxes incident on the Earth. Solar Energetic Particles (SEP) are emitted by solar flares and from the shock fronts ahead of supersonic (and super-Alfvenic) ejections of material from the solar atmosphere. These SEPs enhance the destruction of polar stratospheric ozone which could be an additional form of top-down climate forcing. Even more energetic are Galactic Cosmic Rays (GCRs). These particles are not generated by the Sun, rather they originate at the shock fronts emanating from violent galactic events such as supernovae explosions; however, the expansion of the solar magnetic field into interplanetary space means that the Sun modulates the number of GCRs reaching Earth. These play a key role in enabling Earth’s global electric (thunderstorm) circuit and it has been proposed that they also modulate the formation of clouds. Both electromagnetic and corpuscular solar effects are known to vary over the solar magnetic cycle which is typically between 10 and 14 yrs in length (with an average close to 11 yrs). The solar magnetic field polarity at any one phase of one of these activity cycles is opposite to that at the same phase of the next cycle and this influences some phenomena, for example GCRs, which therefore show a 22 yr (“Hale”) cycle on average. Other phenomena, such as irradiance modulation, do not depend on the polarity of the magnetic field and so show only the basic 11-yr activity cycle. However, any effects on climate are much more significant for solar drifts over centennial timescales. This chapter discusses and evaluates potential effects on Earth’s climate system of variations in these solar inputs. Because of the great variety of proposed mechanisms, the wide range of timescales studied (from days to millennia) and the many debates (often triggered by the application of inadequate statistical methods), the literature on this subject is vast, complex, divergent and rapidly changing: consequently the number of references cited in this review is very large (yet still only a small fraction of the total).
Resumo:
Understanding the influence of solar variability on the Earth’s climate requires knowledge of solar variability, solar-terrestrial interactions and the mechanisms determining the response of the Earth’s climate system. We provide a summary of our current understanding in each of these three areas. Observations and mechanisms for the Sun's variability are described, including solar irradiance variations on both decadal and centennial timescales and their relation to galactic cosmic rays. Corresponding observations of variations of the Earth’s climate on associated timescales are described, including variations in ozone, temperatures, winds, clouds, precipitation and regional modes of variability such as the monsoons and the North Atlantic Oscillation. A discussion of the available solar and climate proxies is provided. Mechanisms proposed to explain these climate observations are described, including the effects of variations in solar irradiance and of charged particles. Finally, the contribution of solar variations to recent observations of global climate change are discussed.