984 resultados para Soil water potential


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El ensayo se llevó a cabo en invernáculo con plántulas de Atriplex lampa (zampa) de 30 días. Se realizaron 5 tratamientos, con 20 repeticiones cada uno. El modelo experimental fue completamente aleatorizado. Durante 28 días se efectuaron riegos cada 5 días con soluciones de Murashige & Skoog (MS) y distintas concentraciones finales de NaCl: T1 (sin NaCl) y T2, T3, T4 y T5 con 200, 400, 600 y 800 mM NaCl respectivamente. Se midió: a) la altura de las plantas, a partir del cuello, a los 7, 14, 21 y 28 días; b) el peso seco -por separado- del vástago y la raíz y potencial agua, al finalizar el ensayo (día 28) en muestras tomadas antes del amanecer en plantas cortadas a la altura del cuello. El NaCl adicionado redujo el crecimiento de Atriplex lampa respecto de T1. Dicho efecto se acentuó con el aumento de la concentración salina y la cantidad de días bajo tratamiento. La materia seca aérea producida disminuyó a medida que aumentaba la salinidad del suelo. La producción de materia seca radical no mostró diferencias significativas (P > 0.05) entre tratamientos. Por lo tanto, la zampa podría adaptarse a suelos salinos con crecimiento aceptable, constituyendo una alternativa forrajera valiosa para regiones áridas y salinas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En cerezos plantas con excesivo vigor son poco precoces, a menudo poco productivas y de difícil manejo en el cultivo. El exceso de vigor puede ser controlado con el uso de estrategias de riego deficitario controlado (RDC). Para contribuir a la racionalización del uso del recurso hídrico, controlar el crecimiento vegetativo vigoroso y estimular la producción precoz en plantaciones jóvenes de cerezo, se estableció un ensayo de RDC en un monte frutal comercial de la variedad Bing regado por goteo en la localidad de Agua Amarga, Mendoza, Argentina, Se evaluó la respuesta a distintos regímenes de riego poscosecha sobre parámetros de crecimiento vegetativo (crecimiento de brotes y tronco, área y peso seco foliar), reproductivo (densidad de floración, rendimiento y calidad de frutos) y estado nutricional (nutrimentos foliares y reservas de carbohidratos no estructurales). Los tratamientos de riego poscosecha fueron: riego a demanda plena (T1= Etc 100 %) y RDC reponiendo el 75 % (T2= Etc 75 %) y 50 % (T3= Etc 50 %) respecto de T1. Se midió el estado hídrico de la planta a través del potencial agua del tallo a mediodía y del suelo con sonda de capacitancia y gravimetría. En T3 disminuyó la longitud de brotes, número y longitud de entrenudos, número de hojas, área foliar y peso seco foliar, y área de tronco. En T2 disminuyó la longitud de brotes y de entrenudos. En T3 la intensidad del déficit hídrico impuesta aumentó la calidad de los ramilletes y la producción de yemas de flor, flores y frutos en el ciclo vegetativo siguiente. La calidad y madurez de frutos no fue afectada por los tratamientos de RDC, aunque en T3 aumentó levemente la proporción de frutos dobles. Luego del primer año de RDC en las plantas del T3 hubo una disminución significativa, aunque leve, del contenido de Ky P foliares y de almidón en raíces, El potencial hídrico del tallo a mediodía resultó un buen indicador del estado hídrico de las plantas. En cerezos un ajuste preciso del nivel de restricción hidrica poscosecha puede ser una estrategia de manejo para controlar el vigor y estimular la producción precoz, Al mismo tiempo se ahorran importantes cantidades de agua.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En cerezo, plantas con excesivo vigor son poco precoces, poco productivas y de difícil manejo. El exceso de vigor podría ser controlado con estrategias de riego deficitario controlado (RDC). Durante dos años se realizó un ensayo de RDC en un monte frutal comercial joven y de alto vigor de cerezos Bing, plantado en suelo árido poco profundo y regado por goteo. Se evaluó la respuesta a distintos regímenes de riego sobre el crecimiento de brotes terminales y vigorosos, área y peso seco foliar, y crecimiento de tronco. Los tratamientos de riego fueron: T1 = 100%, T2 = 75% y T3 = 50% de la evapotranspiración máxima (ETc full), respectivamente. Se midió periódicamente el estado hídrico de la planta a través del potencial agua del tallo a mediodía y el estado hídrico del suelo mediante gravimetría. En T3 disminuyó la longitud de brotes, número y longitud de entrenudos, número de hojas, área foliar y peso seco foliar, y área de tronco. En T2 disminuyó la longitud de brotes y entrenudos y el área de sección de tronco. El potencial hídrico del tallo a mediodía fue un buen indicador del estado hídrico de las plantas. En cerezos, un ajuste preciso del nivel de restricción hídrica puede ser una estrategia de manejo para controlar vigor y para ahorrar importantes cantidades de agua.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El transporte del agua en las plantas es impulsado por diferencias de energía libre entre el suelo y la atmósfera, y está regulado por mecanismos biológicos evitadores, como el cierre estomático. La hidratación y la turgencia foliares resultan del equilibrio entre ΨL del apoplasto, el potencial osmótico del simplasto y la elasticidad de los tejidos. Sobre esta base se conjeturó que las interacciones de los mecanismos evitadores del estrés hídrico de la planta tienen un rol clave en la definición de su resistencia a déficit hídrico. Para probar esta hipótesis se construyó un modelo mecanístico basado en las leyes del flujo de savia de Van de Honert, de difusión de Fick, de elasticidad de Hooke, la ecuación de Gardner para el flujo del agua en la rizósfera y el modelo de conductancia estomática (gs) de Buckley. Mediante el modelo se demostró teóricamente que la hidratación y la turgencia foliares dependen de la oferta de agua edáfica (representada por el potencial hídrico del suelo) y de la demanda evaporativa de la atmósfera (representada por la radiación absorbida, la temperatura del aire, la velocidad del viento y el déficit de presión de vapor de la atmósfera). También que los mecanismos evitadores del estrés hídrico -i.e., conductancia hidráulica de la planta, conductancia estomática, elasticidad del tejido y potencial osmótico a turgencia máxima- son todos necesarios para determinar la hidratación y la turgencia foliares. El modelo también demostró que la conductancia hidráulica suelo-hoja (kL) depende de la fracción de agua edáfica transpirable (FTSW) con un patrón de decaimiento sigmoide, a medida que el suelo se seca. Esto implica que las variables que dependen en parte de kL (i.e., gs, transpiración, fotosíntesis y superficie foliar) también dependen de FTSW con el mismo patrón. El modelo se probó experimentalmente a distintos niveles de humedad edáfica (desde déficit hídrico nulo, hasta severo) en cinco variedades de vid y mostró un poder predictivo superior al 90%. En todas las variedades las gs se asociaron linealmente con las kL observadas, al considerar todas las situaciones de déficit hídrico en conjunto, si bien la pendiente de estas relaciones fueron distintas en cada variedad. La contrastación experimental mostró que, en una escala de tiempo de varios meses, las variedades más evitadoras -i.e., Grenache y Cereza- mantuvieron mayor kL, ajuste osmótico y rigidez de los tejidos y una menor pendiente de la relación de gs vs. kL, que las variedades menos evitadoras -i.e., Malbec y Syrah-. La menor pendiente de la relación entre gs y kL, en las variedades más evitadoras, estuvo asociada a una mayor cantidad de estomas, en relación con la cantidad de células epidérmicas. Los variedades más evitadoras bajo déficit hídrico moderado -i.e., con una fracción de agua edáfica transpirable entre 0,6 y 0,4- tuvieron mayor superficie foliar y produjeron más biomasa, favoreciendo raíces profundas y densas, y ahorrando agua. Chardonnay mantuvo una alta hidratación y turgencia a expensas de un alto gasto de agua debido a que privilegiaba una alta kL por sobre el ajuste estomático, por lo que no podría considerarse en forma estricta como muy evitadora.