972 resultados para Soil temperature.
Resumo:
The observed long-term decrease in the regional fire activity of Eastern Canada results in excessive accumulation of organic layer on the forest floor of coniferous forests, which may affect climate-growth relationships in canopy trees. To test this hypothesis, we related tree-ring chronologies of black spruce (Picea mariana (Mill.) B.S.P.) to soil organic layer (SOL) depth at the stand scale in the lowland forests of Quebec's Clay Belt. Late-winter and early-spring temperatures and temperature at the end of the previous year's growing season were the major monthly level environmental controls of spruce growth. The effect of SOL on climate-growth relationships was moderate and reversed the association between tree growth and summer aridity from a negative to a positive relationship: trees growing on thin organic layers were thus negatively affected by drought, whereas it was the opposite for sites with deep (>20-30 cm) organic layers. This indicates the development of wetter conditions on sites with thicker SOL. Deep SOL were also associated with an increased frequency of negative growth anomalies (pointer years) in tree-ring chronologies. Our results emphasize the presence of nonlinear growth responses to SOL accumulation, suggesting 20-30 cm as a provisional threshold with respect to the effects of SOL on the climate-growth relationship. Given the current climatic conditions characterized by generally low-fire activity and a trend toward accumulation of SOL, the importance of SOL effects in the black spruce ecosystem is expected to increase in the future.
Resumo:
Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.
Resumo:
Independent measurements of radiation, sensible and latent heat fluxes and the ground heat flux are used to describe the annual cycle of the surface energy budget at a high-arctic permafrost site on Svalbard. During summer, the net short-wave radiation is the dominant energy source, while well developed turbulent processes and the heat flux in the ground lead to a cooling of the surface. About 15% of the net radiation is consumed by the seasonal thawing of the active layer in July and August. The Bowen ratio is found to vary between 0.25 and 2, depending on water content of the uppermost soil layer. During the polar night in winter, the net long-wave radiation is the dominant energy loss channel for the surface, which is mainly compensated by the sensible heat flux and, to a lesser extent, by the ground heat flux, which originates from the refreezing of the active layer. The average annual sensible heat flux of -6.9 W/m**2 is composed of strong positive fluxes in July and August, while negative fluxes dominate during the rest of the year. With 6.8 W/m**2, the latent heat flux more or less compensates the sensible heat flux in the annual average. Strong evaporation occurs during the snow melt period and particularly during the snow-free period in summer and fall. When the ground is covered by snow, latent heat fluxes through sublimation of snow are recorded, but are insignificant for the average surface energy budget. The near-surface atmospheric stratification is found to be predominantly unstable to neutral, when the ground is snow-free, and stable to neutral for snow-covered ground. Due to long-lasting near-surface inversions in winter, an average temperature difference of approximately 3 K exists between the air temperature at 10 m height and the surface temperature of the snow.
Resumo:
Habitat fragmentation alters the edges of remnant habitat patches. We examined changes in the plant community and soil in relation to distance from edge and edge type for shrub-steppe and pine savannah grasslands in southern British Columbia, Canada. Community composition showed significant nonlinear relationships with distance-to-edge more frequently at paved roads and fruit crops than at dirt roads or control sites (i.e., in the interior of grassland patches), with changes typically extending 25-30 m. More exotic species and fewer native species were found near edges, and edges showed decreased cryptogam cover and increased bare ground, especially near paved roads. The soil factors that best predicted compositional changes were soil pH and Cu/Mn at paved roads, soil pH and nitrogen at fruit crops, and soil resistance at dirt roads. Variation partitioning suggested that both direct (e.g., propagule pressure) and indirect (environmental change) factors mediated edge-related community changes, and provided evidence that nonlinear responses at developed edges were not due to natural gradients. Given the range of grassland patch sizes in this region (many patches 1-100 ha), the edge effects we observed represent a considerable loss of "core" habitat, which must be accounted for in conservation planning and site restoration.