1000 resultados para Soil formation
Resumo:
A regulatory protein, PpaA, involved in photosystem formation in the anoxygenic phototrophic proteobacterium Rhodobacter sphaeroides has been identified and characterized in vivo. Based on the phenotypes of cells expressing the ppaA gene in extra copy and on the phenotype of the ppaA null mutant, it was concluded that PpaA activates photopigment production and puc operon expression under aerobic conditions. This is in contrast to the function of the PpaA homologue from Rhodobacter capsulatus, AerR, which acts as a repressor under aerobic conditions [Dong, C., Elsen, S., Swem, L. R. & Bauer, C. E. (2002). J Bacteriol 184, 2805-2814]. The expression of the ppaA gene increases several-fold in response to a decrease in oxygen tension, suggesting that the PpaA protein is active under conditions of low or no oxygen. However, no discernible phenotype of a ppaA null mutant was observed under anaerobic conditions tested thus far. The photosystem gene repressor PpsR mediates repression of ppaA gene expression under aerobic conditions. Sequence analysis of PpaA homologues from several anoxygenic phototrophic bacteria revealed a putative corrinoid-binding domain. It is suggested that PpaA binds a corrinoid cofactor and the availability or structure of this cofactor affects PpaA activity.
Resumo:
A grazing trial was conducted to quantify N cycling in degraded Leucaena leucocephala (leucaena)-Brachiaria decumbens (signal grass) pastures grown on an acid, infertile, podzolic soil in south-east Queensland. Nitrogen accumulation and cycling in leucaena-signal grass pastures were evaluated for 9 weeks until all of the leucaena on offer (mean 600 kg edible dry matter (EDM)/ha, 28% of total pasture EDM) was consumed. Nitrogen pools in the grass, leucaena, soil, cattle liveweight, faeces and urine were estimated. The podzolic soil (pH 4.8-5.9) was found to be deficient in P, Ca and K. Leucaena leaf tissues contained deficient levels of N, P and Ca. Grass tissues were deficient in N and P. Grazing was found to cycle 65% of N on offer in pasture herbage. However, due to the effect of the plant nutrient imbalances described above, biological N fixation by leucaena contributed only 15 kg/ha N to the pasture system over the 9-month regrowth period, of which 13 kg/ha N was cycled. Cattle retained 1.8 kg/ha N (8% of total N consumed) in body tissue and the remainder was excreted in dung and urine in approximately equal proportions. Mineral soil N concentrations did not change significantly (-3.5 kg/ha N) over the trial period. The ramifications of grazing and fertiliser management strategies, and implications for pasture rundown and sustainability are discussed.
Resumo:
Nitrate leaching below the crop root-zone in variable charge soils may be adsorbed at anion exchange sites, thereby temporarily reducing the risk of contamination of water bodies. The objectives of this study were (i) to investigate whether nitrate adsorption, accumulation, and retention in the Johnstone River Catchment of Far North Queensland wet tropics is widespread; (ii) to assess the capacity of soil in the Johnstone River Catchment to retain nitrate; and (iii) to deduce the consequences of nitrate adsorption/desorption on contamination of water bodies. Soil cores ranging from 8 to 12.5 m depth were taken from 28 sites across the catchment, representing 9 Ferrosol soil types under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and from rainforest. The cores were segmented at 0.5-m depth increments and subsamples were analysed for nitrate-N, cation and anion exchange capacities, pH, exchangeable cations (Ca, Mg, K, Na), soil organic C, electrical conductivity, sulfate-S, and chloride. Nitrate-N concentration under sugarcane ranged from 0 to 72.5 mg/kg, compared with 0 to 0.31 mg/kg under rainforest, both Pin Gin soils. The average N load in 1-12 m depth across 19 highly oxidic profiles of the Pin Gin soil series was 1550 kg/ha, compared with 185 kg/ha under 8 non-Pin Gin soils and 11 kg/ha in rainforest on a Pin Gin soil. Most of the nitrate retention was observed at depth of 2-12 m, particularly at 4-10 m, indicating that the accumulation was well below the crop root-zone. The average maximum potential nitrate retention capacity was 10.8 t/ha for the Pin Gin and 4.7 t/ha for the non-Pin Gin soil. Compared with the current N load, the soils still possess a large capacity to adsorb and retain nitrate in profiles. Retention of large quantities of the leached nitrate deep in most of the profiles has reduced the risk of contamination of water bodies. However, computations show that substantial quantities of the nitrate leached below the root-zone were not adsorbed and remain unaccounted for. This unaccounted nitrate might have entered both on- and off-site water bodies and/or have been denitrified.
Resumo:
Effects of soil water availability on transpiration efficiency (WUET), instantaneous water use efficiency (WUEi) and carbon isotope composition (delta(13)C) were investigated in 7-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell. and in a dry inland provenance of E. argophloia Blakely (Chinchilla), supplied with 100 (W-100), 70 (W-70) and 50% (W-50) of their water requirements. At W-100, WUET of the three provenances were not significantly different but as available soil moisture decreased, E. argophloia produced greater biomass and demonstrated significantly higher WUET than either E. cloeziana provenance. Midday WUEi was not significantly affected by watering regime within each provenance but was lowest in E. argophloia. A decrease in soil water availability caused a consistent increase in delta(13)C values in all three provenances; however, delta(13)C values of E. argophloia in all three water regimes were significantly lower than those of E. cloeziana provenances, which did not differ significantly from each other. For all three provenances, delta(13)C was not correlated with WUEi but height and root collar diameter were negatively correlated to delta(13)C. There was little evidence of differences in delta(13)C, WUET and WUEi between E. cloeziana provenances but clear differences between E. cloeziana and E. argophloia. The high WUET, low WUEi and low delta(13)C for E. argophloia may have implications in the selection of Eucalyptus provenances for commercial forestry in low-rainfall regions.
Resumo:
Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The radiation chemistry of PCTFE at different temperatures has been studied. The polymer was irradiated under vacuum to absorbed doses of up to 1500 kGy. Three irradiation temperatures were chosen. These included ambient temperature, a temperature well above the T, and a temperature above the crystalline melting temperature. These were 298, 423 and 493 K, respectively. The formation of new structures was identified by solid-state FTIR and F-19 NMR. No branching was observed below the melting temperature, but branches were observed above the melting temperature. G-values for chain-end formation were 1.5 and 2.4 at room temperature and 423 K, respectively and the G-value for the formation of double bonds was found to be < 0.1. For the irradiations at 493 K, the G-values for the formation of chain ends, double bonds and branching points were 3.6, 0.2 and 0.5, respectively. The presence of long-chain branches within the polymer structure could not be proven for radiolysis at 493 K, but scission predominates and network formation does not occur upon irradiation. DSC studies of the polymers irradiated at ambient temperature were consistent with chain scission leading to an increase in the percentage crystallinity, as observed for other fluoropolymers. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A new method is presented which allows the separation of the soil aggregate exterior from the aggregate core. The method employs a combination of aggregate freezing with rapid separation of aggregate exteriors using ultrasonic energy. The factors influencing the thickness of the removed aggregate surface layer include water content of the aggregate prior to freezing, temperature difference between that of the frozen aggregate and that of the liquid it is submerged in during sonification, sonification time and energy, and the type of the immersion liquid. The success of the method and the thickness of the removed aggregate surface were examined using barium ( Ba2+) as a tracer. Barium ( as BaCl2) is rapidly absorbed by soil and is present at only very low levels in natural soils. Surface layers of 0.2 - 0.4 cm thickness were successfully removed from aggregates of 1 - 4 cm diameter. Two examples are given from soils in northern NSW to demonstrate the occurrence of small- scale heterogeneity in soil chemical properties. Compared with the surface fraction, a 4 - 7% higher calcium concentration was found in the core fraction of a clay loam soil ( Dermosol). Conversely, on a cracking clay soil ( Vertosol), atrazine concentration was around 15 times greater in the aggregate surface fractions compared with core fractions. Compared with the traditional estimation of soil chemical properties on homogenised bulk soil samples, it is suggested that separate analysis of aggregate surface and core fractions could provide useful additional information on the relationships between soil properties and environmental responses.
Resumo:
The radicals formed on gamma-radiolysis of a series of copolymers of methacrylic acid and acrylonitrile have been investigated by ESR spectroscopy. This series of copolymers spanned the full composition range and the study was carried out at 77 K and ambient temperature. The radicals formed in the copolymers at 77 and 303 K were found to be similar to those found in the two homopolymers, but in the intermediate composition range the presence of acrylonitrile propagation radicals was also detected. These radicals were not observed to be formed in significant quantities on the radiolysis of polyacrylonitrile. They are believed to result from a scission of the main chain at methacrylic acid/acrylonitrile diad sequences following loss of the methacrylic acid carboxyl group. At 77 K, the copolymers with high methacrylic acid contents were found to be more sensitive to radical formation than the methacrylic acid homopolymer, but this enhanced sensitivity was not evident at ambient temperature, where the G-values for radical formation for the copolymers were slightly less than the values for the homopolymers. (C) 2003 Society of Chemical Industry.
Resumo:
Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
José Plínio Baptista School of Cosmology (1. : 2012 : Anchieta, ES). Seminário realizado no período de 14 a 19 de outubro de 2012.
Resumo:
O principal objetivo deste trabalho foi identificar e caracterizar a evolução diária da Camada Limite Atmosférica (CLA) na Região da Grande Vitória (RGV), Estado do Espírito Santo, Brasil e na Região de Dunkerque (RD), Departamento Nord Pas-de-Calais, França, avaliando a acurácia de parametrizações usadas no modelo meteorológico Weather Research and Forecasting (WRF) em detectar a formação e atributos da Camada Limite Interna (CLI) que é formada pelas brisas marítimas. A RGV tem relevo complexo, em uma região costeira de topografia acidentada e uma cadeia de montanhas paralela à costa. A RD tem relevo simples, em uma região costeira com pequenas ondulações que não chegam a ultrapassar 150 metros, ao longo do domínio de estudos. Para avaliar os resultados dos prognósticos feitos pelo modelo, foram utilizados os resultados de duas campanhas: uma realizada na cidade de Dunkerque, no norte da França, em Julho de 2009, utilizando um sistema light detection and ranging (LIDAR), um sonic detection and ranging (SODAR) e dados de uma estação meteorológica de superfície (EMS); outra realizada na cidade de Vitória – Espírito Santo, no mês de julho de 2012, também usando um LIDAR, um SODAR e dados de uma EMS. Foram realizadas simulações usando três esquemas de parametrizações para a CLA, dois de fechamento não local, Yonsei University (YSU) e Asymmetric Convective Model 2 (ACM2) e um de fechamento local, Mellor Yamada Janjic (MYJ) e dois esquemas de camada superficial do solo (CLS), Rapid Update Cycle (RUC) e Noah. Tanto para a RGV quanto para a RD, foram feitas simulações com as seis possíveis combinações das três parametrizações de CLA e as duas de CLS, para os períodos em que foram feitas as campanhas, usando quatro domínios aninhados, sendo os três maiores quadrados com dimensões laterais de 1863 km, 891 km e 297 km, grades de 27 km, 9 km e 3 km, respectivamente, e o domínio de estudo, com dimensões de 81 km na direção Norte-Sul e 63 km na Leste-Oeste, grade de 1 km, com 55 níveis verticais, até um máximo de, aproximadamente, 13.400 m, mais concentrados próximos ao solo. Os resultados deste trabalho mostraram que: a) dependendo da configuração adotada, o esforço computacional pode aumentar demasiadamente, sem que ocorra um grande aumento na acurácia dos resultados; b) para a RD, a simulação usando o conjunto de parametrizações MYJ para a CLA com a parametrização Noah produziu a melhor estimativa captando os fenômenos da CLI. As simulações usando as parametrizações ACM2 e YSU inferiram a entrada da brisa com atraso de até três horas; c) para a RGV, a simulação que usou as parametrizações YSU para a CLA em conjunto com a parametrização Noah para CLS foi a que conseguiu fazer melhores inferências sobre a CLI. Esses resultados sugerem a necessidade de avaliações prévias do esforço computacional necessário para determinadas configurações, e sobre a acurácia de conjuntos de parametrizações específicos para cada região pesquisada. As diferenças estão associadas com a capacidade das diferentes parametrizações em captar as informações superficiais provenientes das informações globais, essenciais para determinar a intensidade de mistura turbulenta vertical e temperatura superficial do solo, sugerindo que uma melhor representação do uso de solo é fundamental para melhorar as estimativas sobre a CLI e demais parâmetros usados por modelos de dispersão de poluentes atmosféricos.
Resumo:
Fertilizer recommendation to most agricultural crops is based on response curves. Such curves are constructed from field experimental data, obtained for a particular condition and may not be reliable to be applied to other regions. The aim of this study was to develop a Lime and Fertilizer Recommendation System for Coconut Crop based on the nutritional balance. The System considers the expected productivity and plant nutrient use efficiency to estimate nutrient demand, and effective rooting layer, soil nutrient availability, as well as any other nutrient input to estimate the nutrient supply. Comparing the nutrient demand with the nutrient supply the System defines the nutrient balance. If the balance for a given nutrient is negative, lime and, or, fertilization is recommended. On the other hand, if the balance is positive, no lime or fertilizer is needed. For coconut trees, the fertilization regime is divided in three stages: fertilization at the planting spot, band fertilization and fertilization at the production phase. The data set for the development of the System for coconut trees was obtained from the literature. The recommendations generated by the System were compared to those derived from recommendation tables used for coconut crop in Brazil. The main differences between the two procedures were for the P rate applied in the planting hole, which was higher in the proposed System because the tables do not pay heed to the pit volume, whereas the N and K rates were lower. The crop demand for K is very high, and the rates recommended by the System are superior to the table recommendations for the formation and initial production stage. The fertilizer recommendations by the System are higher for the phase of coconut tree growth as compared to the production phase, because greater amount of biomass is produced in the first phase.
Resumo:
Coffee cultivation via central-pivot fertigation can lead to fertilizer losses by soil profile internal drainage when water application is excessive and soils have low water retention and cation adsorption capacities. This study analyses the deep water losses from the top 1 m sandy soil layer of east Bahia, Brazil, cultivated with coffee at a high technology level (central-pivot fertigation), using above normal N fertilizer rates. The deep drainage (Q) estimation is made through the application of a climatologic water balance (CWB) program having as input direct measures of irrigation and rainfall, climatological data from weather stations, and measured soil water retention characteristics. The aim of the study is to contribute to the understanding of the hydric regime of coffee crops managed by central-pivot irrigation, analyzing three scenarios (Sc): i) rainfall only, ii) rainfall and irrigation full year, and iii) rainfall and irrigation dry season only. Annual Q values for the 2008/2009 agricultural year were: Sc i = 811.5 mm; Sc ii = 1010.5 mm; and Sc iii = 873.1 mm, so that the irrigation interruption in the wet season reduced Q by 15.7%, without the appearance of water deficit periods. Results show that the use of the CWB program is a convenient tool for the evaluation of Q under the cited conditions.
Resumo:
Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.
Resumo:
Adventitious rooting of ornamental plants can be accelerated by the application of growth regulators, such as auxin. Humic acids, organic matter in soil and organic compounds also have a biostimulant effect. This work evaluated the rooting in cuttings of croton (Codianeum variegatum L. Rumph) and hibiscus (Hibiscus rosa-sinensis L) in response to the application of different concentrations of indolbutyric acid (IBA) and humic acid (HA). The experiment was carried out in a greenhouse. Apical stem cuttings were treated with solutions at concentrations of: 0, 250, 500, 1000, 2000 mg L-1 IBA and 0, 10, 20, 30, 40 mmol L-1 HA carbon isolated from vermicomposting. Forty-five days after the applications, the cuttings were removed from the pots containing carbonized rice hull and the following variables were measured: rooting number, length and width of leaves, fresh and dry matter of root and aerial part and root area. The results were subjected to analysis of variance and the qualitative and quantitative effects of the treatments were compared by contrast and regression, respectively. Regression equations were used to determine the maximum efficiency level of root dry matter according to IBA and HA. Higher accumulation of root dry matter was recorded for the treatments with the doses 579 mg L-1 IBA and 14 mmol L-1 HA and 970 mg L-1 IBA and 50 mmol L-1 HA for root cuttings of croton and hibiscus, respectively. It was found that the application of eiher IBA or HA at the indicated doses accelerates rooting in cuttings of croton and hibiscus and contributes to the formation of vigorous plants.