981 resultados para Software 3D e 2D
Resumo:
Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL
Resumo:
This document presents theimplementation ofa Student Behavior Predictor Viewer(SBPV)for a student predictive model. The student predictive model is part of an intelligent tutoring system, and is built from logs of students’ behaviors in the “Virtual Laboratory of Agroforestry Biotechnology”implemented in a previous work.The SBPVis a tool for visualizing a 2D graphical representationof the extended automaton associated with any of the clusters ofthe student predictive model. Apart from visualizing the extended automaton, the SBPV supports the navigation across the automaton by means of desktop devices. More precisely, the SBPV allows user to move through the automaton, to zoom in/out the graphic or to locate a given state. In addition, the SBPV also allows user to modify the default layout of the automaton on the screen by changing the position of the states by means of the mouse. To developthe SBPV, a web applicationwas designedand implementedrelying on HTML5, JavaScript and C#.
Resumo:
One of the objectives of the European Higher Education Area is the promotion of collaborative and informal learning through the implementation of educational practices. 3D virtual environments become an ideal space for such activities. On the other hand, the problem of financing in Spanish universities has led to the search for new ways to optimize available resources. The Technical University of Madrid requires the use of laboratories which due to their dangerousness, duration or control of the developed processes are difficult to perform in real life. For this reason, we have developed several 3D laboratories in virtual environment. The laboratories are built on open source platform OpenSim. In this paper it is exposed the use of the OpenSim platform for these new teaching experiences and the new design of the software architecture. This architecture requires the adaptation of the platform to the needs of the users and the different laboratories of our University. We will explain the structure of the implemented architecture and the process of creating and configuring it. The proposed architecture is decentralized, each laboratory is housed in different an educational center. The architecture adds several services, among others, the creation and management of users automated, communication between external services and platforms in different program languages. Therefore, we achieve improving the user experience and rising the functionalities of laboratories.
Resumo:
El crecimiento urbano descontrolado en países en vía de desarrollo conlleva grandes desafíos para la gestión del territorio frente al riesgo de inundaciones, aún más en relación al cambio climático. El propósito de la presente comunicación es describir los aspectos más generales y relevantes del proyecto Adaptación Urbana Verde. El software MODCEL© fue adoptado para realizar simulaciones de distintas alternativas de solución y así determinar zonas inundadas y viviendas afectadas de Riohacha, elementos clave para comparar alternativas. El software MODCEL soporta una familia de modelos matemáticos hidráulicos cuasi 3D, discretizando el territorio en ?céldas?. Las salidas de simulación se han reportado en un sistema de información geográfica para la visualización y análisis. A través de un proceso participativo, apoyado en una evaluación de tipo multicriterio, se ha llegado a generar un plan urbano integrado contra las inundaciones con medidas no convencionales estructurales, destacándose el uso de elementos peculiares del territorio como lo son los humedales (naturales y e intervenidos) de Riohacha. Los resultados conseguidos pretenden ser un referente local para la adaptación al cambio climático con visibilidad nacional en la reducción del riesgo de desastres.
Resumo:
Esta tesis presenta un estudio exhaustivo sobre la evaluación de la calidad de experiencia (QoE, del inglés Quality of Experience) percibida por los usuarios de sistemas de vídeo 3D, analizando el impacto de los efectos introducidos por todos los elementos de la cadena de procesamiento de vídeo 3D. Por lo tanto, se presentan varias pruebas de evaluación subjetiva específicamente diseñadas para evaluar los sistemas considerados, teniendo en cuenta todos los factores perceptuales relacionados con la experiencia visual tridimensional, tales como la percepción de profundidad y la molestia visual. Concretamente, se describe un test subjetivo basado en la evaluación de degradaciones típicas que pueden aparecer en el proceso de creación de contenidos de vídeo 3D, por ejemplo debidas a calibraciones incorrectas de las cámaras o a algoritmos de procesamiento de la señal de vídeo (p. ej., conversión de 2D a 3D). Además, se presenta el proceso de generación de una base de datos de vídeos estereoscópicos de alta calidad, disponible gratuitamente para la comunidad investigadora y que ha sido utilizada ampliamente en diferentes trabajos relacionados con vídeo 3D. Asimismo, se presenta otro estudio subjetivo, realizado entre varios laboratorios, con el que se analiza el impacto de degradaciones causadas por la codificación de vídeo, así como diversos formatos de representación de vídeo 3D. Igualmente, se describen tres pruebas subjetivas centradas en el estudio de posibles efectos causados por la transmisión de vídeo 3D a través de redes de televisión sobre IP (IPTV, del inglés Internet Protocol Television) y de sistemas de streaming adaptativo de vídeo. Para estos casos, se ha propuesto una innovadora metodología de evaluación subjetiva de calidad vídeo, denominada Content-Immersive Evaluation of Transmission Impairments (CIETI), diseñada específicamente para evaluar eventos de transmisión simulando condiciones realistas de visualización de vídeo en ámbitos domésticos, con el fin de obtener conclusiones más representativas sobre la experiencia visual de los usuarios finales. Finalmente, se exponen dos experimentos subjetivos comparando varias tecnologías actuales de televisores 3D disponibles en el mercado de consumo y evaluando factores perceptuales de sistemas Super Multiview Video (SMV), previstos a ser la tecnología futura de televisores 3D de consumo, gracias a una prometedora visualización de contenido 3D sin necesidad de gafas específicas. El trabajo presentado en esta tesis ha permitido entender los factores perceptuales y técnicos relacionados con el procesamiento y visualización de contenidos de vídeo 3D, que pueden ser de utilidad en el desarrollo de nuevas tecnologías y técnicas de evaluación de la QoE, tanto metodologías subjetivas como métricas objetivas. ABSTRACT This thesis presents a comprehensive study of the evaluation of the Quality of Experience (QoE) perceived by the users of 3D video systems, analyzing the impact of effects introduced by all the elements of the 3D video processing chain. Therefore, various subjective assessment tests are presented, particularly designed to evaluate the systems under consideration, and taking into account all the perceptual factors related to the 3D visual experience, such as depth perception and visual discomfort. In particular, a subjective test is presented, based on evaluating typical degradations that may appear during the content creation, for instance due to incorrect camera calibration or video processing algorithms (e.g., 2D to 3D conversion). Moreover, the process of generation of a high-quality dataset of 3D stereoscopic videos is described, which is freely available for the research community, and has been already widely used in different works related with 3D video. In addition, another inter-laboratory subjective study is presented analyzing the impact of coding impairments and representation formats of stereoscopic video. Also, three subjective tests are presented studying the effects of transmission events that take place in Internet Protocol Television (IPTV) networks and adaptive streaming scenarios for 3D video. For these cases, a novel subjective evaluation methodology, called Content-Immersive Evaluation of Transmission Impairments (CIETI), was proposed, which was especially designed to evaluate transmission events simulating realistic home-viewing conditions, to obtain more representative conclusions about the visual experience of the end users. Finally, two subjective experiments are exposed comparing various current 3D displays available in the consumer market, and evaluating perceptual factors of Super Multiview Video (SMV) systems, expected to be the future technology for consumer 3D displays thanks to a promising visualization of 3D content without specific glasses. The work presented in this thesis has allowed to understand perceptual and technical factors related to the processing and visualization of 3D video content, which may be useful in the development of new technologies and approaches for QoE evaluation, both subjective methodologies and objective metrics.
Resumo:
Este documento presenta las mejoras y las extensiones introducidas en la herramienta de visualización del modelo predictivo del comportamiento del estudiante o Student Behavior Predictor Viewer (SBPV), implementada en un trabajo anterior. El modelo predictivo del comportamiento del estudiante es parte de un sistema inteligente de tutoría, y se construye a partir de los registros de actividad de los estudiantes en un laboratorio virtual 3D, como el Laboratorio Virtual de Biotecnología Agroforestal, implementado en un trabajo anterior, y cuyos registros de actividad de los estudiantes se han utilizado para validar este trabajo fin de grado. El SBPV es una herramienta para visualizar una representación gráfica 2D del grafo extendido asociado con cualquiera de los clusters del modelo predictivo del estudiante. Además de la visualización del grafo extendido, el SBPV controla la navegación a través del grafo por medio del navegador web. Más concretamente, el SBPV permite al usuario moverse a través del grafo, ampliar o reducir el zoom del gráfico o buscar un determinado estado. Además, el SBPV también permite al usuario modificar el diseño predeterminado del grafo en la pantalla al cambiar la posición de los estados con el ratón. Como parte de este trabajo fin de grado, se han corregido errores existentes en la versión anterior y se han introducido una serie de mejoras en el rendimiento y la usabilidad. En este sentido, se han implementado nuevas funcionalidades, tales como la visualización del modelo de comportamiento de cada estudiante individualmente o la posibilidad de elegir el método de clustering para crear el modelo predictivo del estudiante; así como ha sido necesario rediseñar la interfaz de usuario cambiando el tipo de estructuras gráficas con que se muestran los elementos del modelo y mejorando la visualización del grafo al interaccionar el usuario con él. Todas estas mejoras se explican detenidamente en el presente documento.---ABSTRACT---This document presents the improvements and extensions made to the visualization tool Student Behavior Predictor Viewer (SBPV), implemented in a previous job. The student behavior predictive model is part of an intelligent tutoring system, and is built from the records of students activity in a 3D virtual laboratory, like the “Virtual Laboratory of Agroforestry Biotechnology” implemented in a previous work, and whose records of students activity have been used to validate this final degree work. The SBPV is a tool for visualizing a 2D graphical representation of the extended graph associated with any of the clusters of the student predictive model. Apart from visualizing the extended graph, the SBPV supports the navigation across the graph by means of desktop devices. More precisely, the SBPV allows user to move through the graph, to zoom in/out the graphic or to locate a given state. In addition, the SBPV also allows user to modify the default layout of the graph on the screen by changing the position of the states by means of the mouse. As part of this work, some bugs of the previous version have been fixed and some enhancements have been implemented to improve the performance and the usability. In this sense, we have implemented new features, such as the display of the model behavior of only one student or the possibility of selecting the clustering method to create the student predictive model; as well as it was necessary to redesign the user interface changing the type of graphic structures that show model elements and improving the rendering of the graph when the user interacts with it. All these improvements are explained in detail in the next sections.
Resumo:
3D crop reconstruction with a high temporal resolution and by the use of non-destructive measuring technologies can support the automation of plant phenotyping processes. Thereby, the availability of such 3D data can give valuable information about the plant development and the interaction of the plant genotype with the environment. This article presents a new methodology for georeferenced 3D reconstruction of maize plant structure. For this purpose a total station, an IMU, and several 2D LiDARs with different orientations were mounted on an autonomous vehicle. By the multistep methodology presented, based on the application of the ICP algorithm for point cloud fusion, it was possible to perform the georeferenced point clouds overlapping. The overlapping point cloud algorithm showed that the aerial points (corresponding mainly to plant parts) were reduced to 1.5%–9% of the total registered data. The remaining were redundant or ground points. Through the inclusion of different LiDAR point of views of the scene, a more realistic representation of the surrounding is obtained by the incorporation of new useful information but also of noise. The use of georeferenced 3D maize plant reconstruction at different growth stages, combined with the total station accuracy could be highly useful when performing precision agriculture at the crop plant level.
Resumo:
Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.
Resumo:
The use of 3D data in mobile robotics provides valuable information about the robot’s environment. Traditionally, stereo cameras have been used as a low-cost 3D sensor. However, the lack of precision and texture for some surfaces suggests that the use of other 3D sensors could be more suitable. In this work, we examine the use of two sensors: an infrared SR4000 and a Kinect camera. We use a combination of 3D data obtained by these cameras, along with features obtained from 2D images acquired from these cameras, using a Growing Neural Gas (GNG) network applied to the 3D data. The goal is to obtain a robust egomotion technique. The GNG network is used to reduce the camera error. To calculate the egomotion, we test two methods for 3D registration. One is based on an iterative closest points algorithm, and the other employs random sample consensus. Finally, a simultaneous localization and mapping method is applied to the complete sequence to reduce the global error. The error from each sensor and the mapping results from the proposed method are examined.
Resumo:
This article presents an interactive Java software platform which enables any user to easily create advanced virtual laboratories (VLs) for Robotics. This novel tool provides both support for developing applications with full 3D interactive graphical interface and a complete functional framework for modelling and simulation of arbitrary serial-link manipulators. In addition, its software architecture contains a high number of functionalities included as high-level tools, with the advantage of allowing any user to easily develop complex interactive robotic simulations with a minimum of programming. In order to show the features of the platform, the article describes, step-by-step, the implementation methodology of a complete VL for Robotics education using the presented approach. Finally, some educational results about the experience of implementing this approach are reported.
Resumo:
Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.
Resumo:
En este trabajo se estudia el uso de las nubes de puntos en 3D, es decir, un conjunto de puntos en un sistema de referencia cartesiano en R3, para la identificación y caracterización de las discontinuidades que afloran en un macizo rocoso y su aplicación al campo de la Mecánica de Rocas. Las nubes de puntos utilizadas se han adquirido mediante tres técnicas: sintéticas, 3D laser scanner y la técnica de fotogrametría digital Structure From Motion (SfM). El enfoque está orientado a la extracción y caracterización de familias de discontinuidades y su aplicación a la evaluación de la calidad de un talud rocoso mediante la clasificación geomecánica Slope Mass Rating (SMR). El contenido de la misma está dividido en tres bloques, como son: (1) metodología de extracción de discontinuidades y clasificación de la nube de puntos 3D; (2) análisis de espaciados normales en nubes de puntos 3D; y (3) análisis de la evaluación de la calidad geomecánica de taludes rocoso mediante la clasificación geomecánica SMR a partir de nubes de puntos 3D. La primera línea de investigación consiste en el estudio de las nubes de puntos 3D con la finalidad de extraer y caracterizar las discontinuidades planas presentes en la superficie de un macizo rocoso. En primer lugar, se ha recopilado información de las metodologías existentes y la disponibilidad de programas para su estudio. Esto motivó la decisión de investigar y diseñar un proceso de clasificación novedoso, que muestre todos los pasos para su programación e incluso ofreciendo el código programado a la comunidad científica bajo licencia GNU GPL. De esta forma, se ha diseñado una novedosa metodología y se ha programado un software que analiza nubes de puntos 3D de forma semi-automática, permitiendo al usuario interactuar con el proceso de clasificación. Dicho software se llama Discontinuity Set Extractor (DSE). El método se ha validado empleando nubes de puntos sintéticas y adquiridas con 3D laser scanner. En primer lugar, este código analiza la nube de puntos efectuando un test de coplanaridad para cada punto y sus vecinos próximos para, a continuación, calcular el vector normal de la superficie en el punto estudiado. En segundo lugar, se representan los polos de los vectores normales calculados en el paso previo en una falsilla estereográfica. A continuación se calcula la densidad de los polos y los polos con mayor densidad o polos principales. Estos indican las orientaciones de la superficie más representadas, y por tanto las familias de discontinuidades. En tercer lugar, se asigna a cada punto una familia en dependencia del ángulo formado por el vector normal del punto y el de la familia. En este punto el usuario puede visualizar la nube de puntos clasificada con las familias de discontinuidades que ha determinado para validar el resultado intermedio. En cuarto lugar, se realiza un análisis cluster en el que se determina la agrupación de puntos según planos para cada familia (clusters). A continuación, se filtran aquellos que no tengan un número de puntos suficiente y se determina la ecuación de cada plano. Finalmente, se exportan los resultados de la clasificación a un archivo de texto para su análisis y representación en otros programas. La segunda línea de investigación consiste en el estudio del espaciado entre discontinuidades planas que afloran en macizos rocosos a partir de nubes de puntos 3D. Se desarrolló una metodología de cálculo de espaciados a partir de nubes de puntos 3D previamente clasificadas con el fin de determinar las relaciones espaciales entre planos de cada familia y calcular el espaciado normal. El fundamento novedoso del método propuesto es determinar el espaciado normal de familia basándonos en los mismos principios que en campo, pero sin la restricción de las limitaciones espaciales, condiciones de inseguridad y dificultades inherentes al proceso. Se consideraron dos aspectos de las discontinuidades: su persistencia finita o infinita, siendo la primera el aspecto más novedoso de esta publicación. El desarrollo y aplicación del método a varios casos de estudio permitió determinar su ámbito de aplicación. La validación se llevó a cabo con nubes de puntos sintéticas y adquiridas con 3D laser scanner. La tercera línea de investigación consiste en el análisis de la aplicación de la información obtenida con nubes de puntos 3D a la evaluación de la calidad de un talud rocoso mediante la clasificación geomecánica SMR. El análisis se centró en la influencia del uso de orientaciones determinadas con distintas fuentes de información (datos de campo y técnicas de adquisición remota) en la determinación de los factores de ajuste y al valor del índice SMR. Los resultados de este análisis muestran que el uso de fuentes de información y técnicas ampliamente aceptadas pueden ocasionar cambios en la evaluación de la calidad del talud rocoso de hasta una clase geomecánica (es decir, 20 unidades). Asimismo, los análisis realizados han permitido constatar la validez del índice SMR para cartografiar zonas inestables de un talud. Los métodos y programas informáticos desarrollados suponen un importante avance científico para el uso de nubes de puntos 3D para: (1) el estudio y caracterización de las discontinuidades de los macizos rocosos y (2) su aplicación a la evaluación de la calidad de taludes en roca mediante las clasificaciones geomecánicas. Asimismo, las conclusiones obtenidas y los medios y métodos empleados en esta tesis doctoral podrán ser contrastadas y utilizados por otros investigadores, al estar disponibles en la web del autor bajo licencia GNU GPL.
Resumo:
Today, the requirement of professional skills to university students is constantly increasing in our society. In our opinion, the content offered in official degrees need to be nourished with different variables, enriching their global professional knowledge in a parallel way; that is why, in recent years, there is a great multiplicity of complementary courses at university. One of the most socially demanded technical requirements within the architectural, design or engineering field is the management of 3D drawing software, becoming an indispensable reality in these sectors. Thus, this specific training becomes essential over two-dimension traditional design, because the inclusion of great possibilities of spatial development that go beyond conventional orthographic projections (plans, sections or elevations), allowing modelling and rotation of the selected items from multiple angles and perspectives. Therefore, this paper analyzes the teaching methodology of a complementary course for those technicians in the construction industry interested in computer-aided design, using modelling (SketchupMake) and rendering programs (Kerkythea). The course is developed from the technician point of view, by learning computer management and its application to professional development from a more general to a more specific view through practical examples. The proposed methodology is based on the development of real examples in different professional environments such as rehabilitation, new constructions, opening projects or architectural design. This multidisciplinary contribution improves criticism of students in different areas, encouraging new learning strategies and the independent development of three-dimensional solutions. Thus, the practical implementation of new situations, even suggested by the students themselves, ensures active participation, saving time during the design process and the increase of effectiveness when generating elements which may be represented, moved or virtually tested. In conclusion, this teaching-learning methodology improves the skills and competencies of students to face the growing professional demands of society. After finishing the course, technicians not only improved their expertise in the field of drawing but they also enhanced their capacity for spatial vision; both essential qualities in these sectors that can be applied to their professional development with great success.
Resumo:
Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.