993 resultados para Snake venom toxins
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenadação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.
Resumo:
Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2 kDa, which represent the smallest peptide toxins found in sea anemones. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, delta-AITX-Bcg1a and delta-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both delta-AITX-Bcg1a and delta-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5 > 1.6 > 1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and delta-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-54 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than delta-AITX-Bcg1a and delta-AITX-Bcg1b. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This communication describes the general biochemical properties and some immunological characteristics of the venom from the Peruvian scorpion Hadruroides lunatus, which is the most medically relevant species in Peru. The soluble venom of this scorpion is toxic to mice, the LD50 determined was 0.1 mg/kg and 21.55 mg/kg when the venom was injected intracranial or intraperitoneally, respectively. The soluble venom displayed proteolytic, hyaluronidasic, phospholipasic and cardiotoxic activities. High performance liquid chromatography of the soluble venom resulted in the separation of 20 fractions. Two peptides with phospholipasic activity were isolated to homogeneity and their molecular masses determined by mass spectrometry (MALDI TOF). Anti-H. lunatus venom sera were produced in rabbits. Western blotting analysis showed that most of the protein content of this venom is immunogenic. H. lunatus anti-venom displayed consistent cross-reactivity with venom antigens from the new World-scorpions Tityus serrulatus and Centruroides sculpturatus venoms; however, a weaker reactivity was observed against the venom antigens from the old World-scorpion Androctonus australis Hector. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Crotamine, a 5-kDa peptide, possesses a unique biological versatility. Not only has its cell-penetrating activity become of clinical interest but, moreover, its potential selective antitumor activity is of great pharmacological importance. In the past, several studies have attempted to elucidate the exact molecular target responsible for the crotamine-induced skeletal muscle spasm. The aim of this study was to investigate whether crotamine affects voltage-gated potassium (K-V) channels in an effort to explain its in vivo effects. Crotamine was studied on ion channel function using the two-electrode voltage clamp technique on 16 cloned ion channels (12 K-V channels and 4 Na-V channels), expressed in Xenopus laevis oocytes. Crotamine selectively inhibits K-V 1.1, K-V 1.2, and K-V 1.3 channels with an IC50 of similar to 300 nM, and the key amino acids responsible for this molecular interaction are suggested. Our results demonstrate for the first time that the symptoms, which are observed in the typical crotamine syndrome, may result from the inhibition of K-V channels. The ability of crotamine to inhibit the potassium current through K-V channels unravels it as the first snake peptide with the unique multifunctionality of cell-penetrating and antitumoral activity combined with K-V channel-inhibiting properties. This new property of crotamine might explain some experimental observations and opens new perspectives on pharmacological uses.
Resumo:
In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.
Resumo:
An L-amino acid oxidase (LAAO), NA-LAAO, was purified from the venom of Naja atra. Its N-terminal sequence shows great similarity with LAAOs from other snake venoms. NA-LAAO dose-dependently induced aggregation of washed human platelets. However, it had no activity on platelets in platelet-rich plasma. A low concentration of NA-LAAO greatly promoted the effect of hydrogen peroxide, whereas hydrogen peroxide itself had little activation effect on platelets. NA-LAAO induced tyrosine phosphorylation of a number of platelet proteins including Src kinase, spleen tyrosine kinase, and phospholipase Cgamma2. Unlike convulxin, Fc receptor gamma chain and T lymphocyte adapter protein are not phosphorylated in NA-LAAO-activated platelets, suggesting an activation mechanism different from the glycoprotein VI pathway. Catalase inhibited the platelet aggregation and platelet protein phosphorylation induced by NA-LAAO. NA-LAAO bound to fixed platelets as well as to platelet lysates of Western blots. Furthermore, affinity chromatography of platelet proteins on an NA-LAAO-Sepharose 4B column isolated a few platelet membrane proteins, suggesting that binding of NA-LAAO to the platelet membrane might play a role in its action on platelets.
Resumo:
The present study describes the isolation of the first neurotoxin (acantoxin IVa) from Acanthophis sp. Seram death adder venom and an examination of its activity at nicotinic acetylcholine receptor (naChR) subtypes. Acantoxin IVa (MW 6815; 0.1-1.0 muM) caused concentration-dependent inhibition of indirect twitches (0.1 Hz, 0.2 ms, supramaximal V) and inhibited contractile responses to exogenous nicotinic agonists in the chick biventer cervicis nerve-muscle, confirming that this toxin is a postsynaptic neurotoxin. Acantoxin IVa (1-10 nM) caused pseudo-irreversible antagonism at skeletal muscle nAChR with an estimated pA(2) Of 8.36 +/- 0.17. Acantoxin IVa was approximately two-fold less potent than the long-chain (Type 11) neurotoxin, alpha-bungarotoxin. With a pK(i) value of 4.48, acantoxin IVa was approximately 25,000 times less potent than a-bungarotoxin at alpha7-type neuronal nAChR. However, in contrast to alpha-bungarotoxin, acantoxin IVa completely inhibited specific [H-3]-methyllycaconitine (MLA) binding in rat hippocampus homogenate. Acantoxin IVa had no activity at ganglionic nAChR, alpha4beta2 subtype neuronal nAChR or cytisine-resistant [H-3]-epibatidine binding sites. While long-chain neurotoxin resistant [H-3]-MLA binding in hippocampus homogenate requires further investigation, we have shown that a short-chain (Type 1) neurotoxin is capable of fully inhibiting specific [H-3]-MLA binding. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Venomous species have evolved cocktails of bioactive peptides to facilitate prey capture. Given their often exquisite potency and target selectivity, venom peptides provide unique biochemical tools for probing the function of membrane proteins at the molecular level. in the field of the nicotinic acetylcholine receptors (nAChRs), the subtype specific snake alpha-neurotoxins and cone snail alpha-conotoxins have been widely used to probe receptor structure and function in native tissues and recombinant systems. However, only recently has it been possible to generate an accurate molecular view of these nAChR-toxin interactions. Crystal structures of AChBP, a homologue of the nAChR ligand binding domain, have now been solved in complex with alpha-cobratoxin, alpha-conotoxin PnIA and alpha-conotoxin Iml. The orientation of all three toxins in the ACh binding site confirms many of the predictions obtained from mutagenesis and docking simulations on homology models of mammalian nAChR. The precise understanding of the molecular determinants of these complexes is expected to contribute to the development of more selective nAChR modulators. In this commentary, we review the structural data on nAChR-toxin interactions and discuss their implications for the design of novel ligands acting at the nAChR. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The abundance and activity of the prothrombin activator (pseutarin C) within the venom of the Eastern brown snake (Pseudonaja textilis textilis) is the primary determinant of its coagulation potency. Textilinin-1, also in this venom, is a plasmin inhibitor which is thought to exert its toxic effects through the slowing of fibrinolysis. The aim of this report is to determine if there are differences in the potency of the venom from Eastern brown snakes collected from South Australia (SA) compared to those from Queensland (QLD). A concentration of 0.4 mu g/ml venom protein from six QLD specimens clotted citrated plasma in an average time of 21.4 +/- 3.3 s compared to 68.7 +/- 2.4 s for the same amount of SA venom (averaged for six individuals). The more potent procoagulant activity of the QLD venom was measured between 0.4 and 94 mu g/ml venom protein in plasma. The anti-plasmin activity of textilinin was also greater in the venom of the snakes collected from QLD, causing full inhibition of plasmin at approximately 1.88 mu g/ml of venom protein compared to approximately 7.5 mu g/ml for the SA venoms. It is concluded that geographic differentiation of the Eastern brown snakes results in significant differences venom potency.