984 resultados para Size distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"July 1976."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between saturated hydraulic conductivity (Ks) and grain-size distribution was evaluated for 49 sites underlain by either glacially over consolidated or normally consolidated fluvio-glacial deposits in the Puget Lowland. A linear regression comprising pairs of grain-size analyses and pilot infiltration tests predicts Ks with a 1 sigma uncertainty of a factor of about 3.5 with 70% of the population variance accounted for. The correlation coefficient R^2 of about 0.90 shows that there is a strong correlation between the grain-size distribution and Ks. In contrast, a widely applied analysis proposed by Massmann (2003) explains only 20% of the population variance for normally consolidated materials with an R^2 of only 0.15. That analysis entirely fails to explain the population variance for over consolidated materials. The method developed in this study is recommended for determination of Ks for fluvio-glacial deposits of the Puget Lowland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population growth, urban development, and increased commercial and industrial activity in the south-central Puget Lowlands of Washington State has led to an increased demand for groundwater. The Vashon till is a glacially consolidated, low-permeability unit comprising unstratified clay, silt, cobbles and boulders with ubiquitous coarse-grained lenses and is an extensive surficial unit throughout the south-central Puget Lowland. Thus, understanding the physical and hydrological characteristics – specifically, the hydraulic conductivity – of this unit is a necessary component of a groundwater model. This study provides (1) a record of the physical characteristics of Vashon till deposits within the study area; and (2) an estimate of the highest, lowest, and average value of saturated hydraulic conductivity based on the grain-size distribution of Vashon till samples collected from six field sites in the Puyallup River Watershed. Analysis shows that the average moisture content ranges between about 1 and 6%, average dry bulk density is about 2.20 g/cm3, and average porosity is about 17%. Grain-size distributions show that half of the samples analyzed are well graded, while the other half is poorly graded. Grain-size distributions also show an average d10 value of about 0.20 mm, and average ff values ≤ 16%, which are key values in estimating the saturated hydraulic conductivity of over-consolidated glacial deposits. Based on these observed values, the estimates of hydraulic conductivity range from a minimum of 0.02 m/d to a maximum of 1.38 m/d in within the general Vashon till.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates two methods for estimating a soilís hydraulic conductivity: in-situ infiltration tests and grain-size analyses. There are numerous formulas in the literature that relate hydraulic conductivity to various parameters of the infiltrating medium, but studies have shown that these formulas do not perform well when applied to depositional environments that differ from those used to derive the formulas. Thus, there exists a need to specialize infiltration tests and related grain-size analyses for the Vashon advance outwash in the Puget Lowland. I evaluated 134 infiltration tests and 119 soil samples to find a correlation between grain-size parameters and hydraulic conductivity. This work shows that a constant-head borehole infiltration test that accounts for capillarity with alpha approximately 5m^-1 is an effective method for calculating hydraulic conductivity from our flow tests. Then, by conducting grain-size analysis and applying a multiple linear regression, I show that the hydraulic conductivity can also be estimated by log(K) = 1.906 + 0.102D_10 + 0.039D_60 - 0.034D_90 - 7.952F_fines. This result predicts the infiltration rate with a 95% confidence interval of 20 ft/day. The results of study are for application in the Puget Lowland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative study how reactor configuration, sludge loading and air flowrate affect flow regimes, hydrodynamics, floc size distribution and sludge solids-liquid separation properties. Three reactor configurations were studied in bench scale activated sludge bubble column reactor (BCR), air-lift reactor (ALR) and aerated stirred reactor (ASR). The ASR demonstrated the highest capacity of gas holdup and resistance, and homogeneity in flow regimes and shearing forces, resulting in producing large numbers of small and compact floes. The fluid dynamics in the ALR created regularly directed recirculation forces to enhance the gas holdup and sludge flocculation. The BCR distributed a high turbulent flow regime and non-homogeneity in gas holdup and mixing, and generated large numbers of larger and looser floes. The sludge size distributions, compressibility and settleability were significantly influenced by the reactor configurations associated with the flow regimes and hydrodynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach based on the nonlocal density functional theory to determine pore size distribution (PSD) of activated carbons and energetic heterogeneity of the pore wall is proposed. The energetic heterogeneity is modeled with an energy distribution function (EDF), describing the distribution of solid-fluid potential well depth (this distribution is a Dirac delta function for an energetic homogeneous surface). The approach allows simultaneous determining of the PSD (assuming slit shape) and EDF from nitrogen or argon isotherms at their respective boiling points by using a set of local isotherms calculated for a range of pore widths and solid-fluid potential well depths. It is found that the structure of the pore wall surface significantly differs from that of graphitized carbon black. This could be attributed to defects in the crystalline structure of the surface, active oxide centers, finite size of the pore walls (in either wall thickness or pore length), and so forth. Those factors depend on the precursor and the process of carbonization and activation and hence provide a fingerprint for each adsorbent. The approach allows very accurate correlation of the experimental adsorption isotherm and leads to PSDs that are simpler and more realistic than those obtained with the original nonlocal density functional theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling and optimization of the power draw of large SAG/AG mills is important due to the large power draw which modern mills require (5-10 MW). The cost of grinding is the single biggest cost within the entire process of mineral extraction. Traditionally, modelling of the mill power draw has been done using empirical models. Although these models are reliable, they cannot model mills and operating conditions which are not within the model database boundaries. Also, due to its static nature, the impact of the changing conditions within the mill on the power draw cannot be determined using such models. Despite advances in computing power, discrete element method (DEM) modelling of large mills with many thousands of particles could be a time consuming task. The speed of computation is determined principally by two parameters: number of particles involved and material properties. The computational time step is determined by the size of the smallest particle present in the model and material properties (stiffness). In the case of small particles, the computational time step will be short, whilst in the case of large particles; the computation time step will be larger. Hence, from the point of view of time required for modelling (which usually corresponds to time required for 3-4 mill revolutions), it will be advantageous that the smallest particles in the model are not unnecessarily too small. The objective of this work is to compare the net power draw of the mill whose charge is characterised by different size distributions, while preserving the constant mass of the charge and mill speed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind tunnel measurements of drop Size distributions from Micronair A U4000 and A U5000 rotary atomizers were collected to develop a database for model use. The measurements varied tank mix, flow rate, air speed, and blade angle conditions, which were correlated by multiple regressions (average R-2 = 0.995 for A U4000 and 0.988 for AU5000). This database replaces an outdated set of rotary atomizer data measured in the 1980s by the USDA Forest Service and fills in a gap in data measured in the 1990s by the Spray Drift Task Force. Since current USDA Forest Service spray projects rely on rotary atomizers, the creation of the database (and its multiple regression interpolation) satisfies a need seen for ten years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of nonlocal density functional theory (NLDFT) to determine pore size distribution (PSD) of activated carbons using a nongraphitized carbon black, instead of graphitized thermal carbon black, as a reference system is explored. We show that in this case nitrogen and argon adsorption isotherms in activated carbons are precisely correlated by the theory, and such an excellent correlation would never be possible if the pore wall surface was assumed to be identical to that of graphitized carbon black. It suggests that pore wall surfaces of activated carbon are closer to that of amorphous solids because of defects of crystalline lattice, finite pore length, and the presence of active centers.. etc. Application of the NLDFT adapted to amorphous solids resulted in quantitative description of N-2 and Ar adsorption isotherms on nongraphitized carbon black BP280 at their respective boiling points. In the present paper we determined solid-fluid potentials from experimental adsorption isotherms on nongraphitized carbon black and subsequently used those potentials to model adsorption in slit pores and generate a corresponding set of local isotherms, which we used to determine the PSD functions of different activated carbons. (c) 2005 Elsevier Ltd. All rights reserved.