850 resultados para Silicone gels
Resumo:
This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.
Resumo:
The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.
Resumo:
Hydrogels are promising materials for cartilage repair, but the properties required for optimal functional outcomes are not yet known. In this study, we functionalized four materials that are commonly used in cartilage tissue engineering and evaluated them using in vitro cultures. Gelatin, hyaluronic acid, polyethylene glycol, and alginate were functionalized with methacrylic anhydride to make them photocrosslinkable. We found that the responses of encapsulated human chondrocytes were highly dependent on hydrogel type. Gelatin hydrogels supported cell proliferation and the deposition of a glycosaminoglycan rich matrix with significant mechanical functionality. However, cells had a dedifferentiated phenotype, with high expression of collagen type I. Chondrocytes showed the best redifferentiation in hyaluronic acid hydrogels, but the newly formed matrix was highly localized to the pericellular regions, and these gels degraded rapidly. Polyethylene glycol hydrogels, as a bioinert control, did not promote any strong responses. Alginate hydrogels did not support the deposition of new matrix, and the stiffness decreased during culture. The markedly different response of chondrocytes to these four photocrosslinkable hydrogels demonstrates the importance of material properties for chondrogenesis and extracellular matrix production, which are critical for effective cartilage repair.
Transmittance properties of contact lens multipurpose solutions and their effects on a hydrogel lens
Resumo:
Purpose The aim was to assess the compatibility of different multipurpose solutions (MPSs) with one type of silicone hydrogel (SiH) contact lens by, assessing the changes in both ultraviolet (UV) and visible light transmissibility of the hydrogel lens caused by the MPSs. Methods The light transmittance from 200-700 nm were measured for the lotrafilcon B blister pack solution (BPS), six MPSs namely, ReNuMultiPlus Multi-Purpose Solution (Bausch and Lomb Inc., Rochester NY, USA.); Complete RevitaLens Multi-Purpose (Abbott Medical Optics Inc., Quarryvale Co. Dublin, Ireland); All In One Light (Sauflon Pharmaceuticals Ltd., Twickenham, England); SOLO-care AQUA™ (Ciba Vision Corporation Duluth, Georgia, USA.); Biomedics All-in-one solution (CooperVision, Hamble, UK); and HippiaMultiPlus All-in-one solution (Interojo Inc., Kyeonggi-do, Korea), and a lotrafilcon B SiH lens (before and after storage), using a spectrophotometer. Results The UV transmitted through the BPS and the MPS were similar (p >.05, for all), except for the HippiaMultiPlus which was lower (p < 0.001) by 19.8%. Mean transparency values were statistically (p<.001) significantly different between the BPS and the MPSs. All MP solution/SiH lens combinations resulted in relatively high UV transmittance values especially in the UVC spectrum, and significantly increased (p <.001) the visible light transmittance values of the SiH lens. Greater changes in transparency were observed in the ReNu/SiH lens (28.5%) and the Complete RevitaLens/SiH lens (24.9%) combinations. Conclusion The six MPSs showed significant variations in the transmitted UV and visible light. Similar to the BPS, all MPSs were equally transparent, but showed very poor UVA & UVB attenuation, except for the Hippia MultiPlus. The MPS/SiH lens combinations did not significantly affect the lens transparency but it significant increased the lens transmittance of UV radiation, after storage. Further in-vivo studies are needed to validate if this effect is constant.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.
Resumo:
Introduction Different types of hallucinations are symptomatic of different conditions. Schizotypal hallucinations are unique in that they follow existing delusional narrative patterns: they are often bizarre, they are generally multimodal, and they are particularly vivid (the experience of a newsreader abusing you personally over the TV is both visual and aural. Patients who feel and hear silicone chips under their skin suffer from haptic hallucinations as well as aural ones, etc.) Although there are a number of hypotheses for hallucinations, few cogently grapple the sheer bizarreness of the ones experienced in schizotypal psychosis. Methods A review-based hypothesis, traversing theory from the molecular level to phenomenological expression as a distinct and recognizable symptomatology. Conclusion Hallucinations appear to be caused by a two-fold dysfunction in the mesofrontal dopamine pathway, which is considered here to mediate attention of different types: in the anterior medial frontal lobe, the receptors (largely D1 type) mediate declarative awareness, whereas the receptors in the striatum (largely D2 type) mediate latent awareness of known schemata. In healthy perception, most of the perceptual load is performed by the latter: by the top-down predictive and mimetic engine, with the bottom-up mechanism being used as a secondary tool to bring conscious deliberation to stimuli that fails to match up against expectations. In schizophrenia, the predictive mode is over-stimulated, while the bottom-up feedback mechanism atrophies. The dysfunctional distribution pattern effectively confines dopamine activity to the striatum, thereby stimulating the structural components of thought and behaviour: well-learned routines, narrative structures, lexica, grammar, schemata, archetypes, and other procedural resources. Meanwhile, the loss of activity in the frontal complex reduces the capacity for declarative awareness and for processing anything that fails to meet expectations.
Resumo:
This thesis develops and applies an analytical method to treat the blast response of glass façades and studies the influence of controlling parameters such as all component materials and geometric properties, support conditions and energy absorption, and hence establishes a framework for their design for a credible blast event.
Resumo:
A novel protective covering with a layered and staggered structure was proposed to protect concrete against projectile impact. Experimental study was conducted to investigate the ballistic behaviour of the concrete targets against 12.7 mm armour-piercing incendiary projectile at velocities ranging from 537.7 to 596.5 m/s. The results showed that the concrete targets with protective covering exhibited superior integrity with no damage on the distal surface, whereas the concrete targets without protective covering were fractured with penetrating cracks throughout the thickness of the target. Moreover, the protected concrete targets displayed significantly reduced penetration depth compared with the concrete targets without protective covering. The protective covering with epoxy adhesive interlayers had a bigger protection factor than that with silicone sealant interlayers, but the former suffered more severe damage than the latter.
Resumo:
This paper investigates the influence of structural sealant joints on the blast performance of laminated glass (LG) panels, using a comprehensive numerical procedure. A parametric study was carried out by varying the width, thickness and the Young’s modulus (E) of the structural silicone sealant joints and the behavior of the LG panel was studied under two different blast loads. Results show that these parameters influence the blast response of LG panels, especially under the higher blast load. Sealant joints that are thicker, have smaller widths and lower E values increase the flexibility at the supports and hence increase the energy absorption of the LG panel while reducing the support reactions. Results also confirmed that sealant joints designed according to current standards perform well under blast loads. Modeling techniques presented in this paper could be used to complement and supplement the guidance in existing design standards. The new information generated in this paper will contribute towards safer and more economical designs of entire facade systems including window glazing, frames and supporting structures.
Resumo:
Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 μg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.
Resumo:
There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications.
Resumo:
The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
Resumo:
Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46 ± 0.04 dB m −1 Gy −1, being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024 ± 0.003 dB MHz −1 Gy −1; the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.
Resumo:
In an attempt to generate supramolecular assemblies able to function as self-healing hydrogels, a novel ureido-pyrimidinone (UPy) monomer, 2-(N ′-methacryloyloxyethylureido)-6-(1-adamantyl)-4[1H]-pyrimidinone, was synthesized and then copolymerized with N,N-dimethylacrylamide at four different feed compositions, using a solution of lithium chloride in N,N-dimethylacetamide as the polymerization medium. The assembling process in the resulting copolymers is based on crosslinking through the reversible quadruple hydrogen bonding between side-chain UPy modules. The adamantyl substituent was introduced in order to create a “hydrophobic pocket” that may protect the hydrogen bonds against the disruptive effect of water molecules. Upon hydration to equilibrium, all copolymers generated typical hydrogels when their concentration in the hydrated system was at least 15%. The small-deformation rheometry showed that all hydrated copolymers were hydrogels that maintained a solid-like behavior, and that their extrusion through a syringe needle did not affect significantly this behavior, suggesting a self-healing capacity in these materials. An application as injectable substitutes for the eye's vitreous humor was proposed
Resumo:
Methacrylate-based hydrogels, such as homo- and copolymers of 2-hydroxyethyl methacrylate (HEMA), have demonstrated significant potential for use in biomedical applications. However, many of these hydrogels tend to resist cell attachment and growth at their surfaces, which can be detrimental for certain applications. In this article, glycidyl methacrylate (GMA) was copolymerized with HEMA to generate gels functionalized with epoxide groups. The epoxides were then functionalized by two sequential click reactions, namely, nucleophilic ring opening of epoxides with sodium azide and then coupling of small molecules and peptides via Huisgen's copper catalyzed 1,3-dipolar cycloaddition of azides with alkynes. Using this strategy it was possible to control the degree of functionalization by controlling the feed ratio of monomers during polymerization. In vitro cell culture of human retinal pigment epithelial cell line (ARPE-19) with the hydrogels showed improved cell adhesion, growth and proliferation for hydrogels that were functionalized with a peptide containing the RGD sequence. In addition, the cell attachment progressively decreased with increasing densities of the RGD containing peptide. In summary, a facile methodology has been presented that gives rise to hydrogels with controlled degrees of functionality, such that the cell response is directly related to the levels and nature of that functionality.