978 resultados para Set-valued map
Resumo:
After a brief discussion of the history of the problem, we propose a generalization of the map coloring problem to higher dimensions.
Resumo:
In the design of modulation schemes for the physical layer network-coded two way relaying scenario with two phases (Multiple access (MA) Phase and Broadcast (BC) Phase), it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference and all these network coding maps should satisfy a requirement called the exclusive law. In [11] the case in which the end nodes use M-PSK signal sets is extensively studied using Latin Squares. This paper deals with the case in which the end nodes use square M-QAM signal sets. In a fading scenario, for certain channel conditions, termed singular fade states, the MA phase performance is greatly reduced. We show that the square QAM signal sets lead to lesser number of singular fade states compared to PSK signal sets. Because of this, the complexity at the relay is enormously reduced. Moreover lesser number of overhead bits are required in the BC phase. We find the number of singular fade states for PAM and QAM signal sets used at the end nodes. The fade state γejθ = 1 is a singular fade state for M-QAM for all values of M and it is shown that certain block circulant Latin Squares remove this singular fade state. Simulation results are presented to show that QAM signal set perform better than PSK.
Resumo:
The design of modulation schemes for the physical layer network-coded two way wireless relaying scenario is considered. It was observed by Koike-Akino et al. for the two way relaying scenario, that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA Phase and all these network coding maps should satisfy a requirement called exclusive law. We extend this approach to an Accumulate-Compute and Forward protocol which employs two phases: Multiple Access (MA) phase consisting of two channel uses with independent messages in each channel use, and Broadcast (BC) phase having one channel use. Assuming that the two users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Square with side 16, and conversely, this relationship can be used to get the network coding maps satisfying the exclusive law. Two methods of obtaining this network coding map to be used at the relay are discussed. Using the structural properties of the Latin Squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps. Having obtained all the Latin Squares, the set of all possible channel realizations is quantized, depending on which one of the Latin Squares obtained optimizes the performance. The quantization thus obtained, is shown to be the same as the one obtained in [7] for the 2-stage bidirectional relaying.
Resumo:
In this paper, we have proposed a centralized multicast authentication protocol (MAP) for dynamic multicast groups in wireless networks. In our protocol, a multicast group is defined only at the time of the multicasting. The authentication server (AS) in the network generates a session key and authenticates it to each of the members of a multicast group using the computationally inexpensive least common multiple (LCM) method. In addition, a pseudo random function (PRF) is used to bind the secret keys of the network members with their identities. By doing this, the AS is relieved from storing per member secrets in its memory, making the scheme completely storage scalable. The protocol minimizes the load on the network members by shifting the computational tasks towards the AS node as far as possible. The protocol possesses a membership revocation mechanism and is protected against replay attack and brute force attack. Analytical and simulation results confirm the effectiveness of the proposed protocol.
Resumo:
The design of modulation schemes for the physical layer network-coded two way relaying scenario is considered with the protocol which employs two phases: Multiple access (MA) Phase and Broadcast (BC) phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. In other words, the set of all possible channel realizations (the complex plane) is quantized into a finite number of regions, with a specific network coding map giving the best performance in a particular region. We obtain such a quantization analytically for the case when M-PSK (for M any power of 2) is the signal set used during the MA phase. We show that the complex plane can be classified into two regions: a region in which any network coding map which satisfies the so called exclusive law gives the same best performance and a region in which the choice of the network coding map affects the performance, which is further quantized based on the choice of the network coding map which optimizes the performance. The quantization thus obtained analytically, leads to the same as the one obtained using computer search for 4-PSK signal set by Koike-Akino et al., for the specific value of M = 4.
Resumo:
The design of modulation schemes for the physical layer network-coded two way relaying scenario is considered with the protocol which employs two phases: Multiple access (MA) Phase and Broadcast (BC) Phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA Phase and all these network coding maps should satisfy a requirement called the exclusive law. We show that every network coding map that satisfies the exclusive law is representable by a Latin Square and conversely, and this relationship can be used to get the network coding maps satisfying the exclusive law. Using the structural properties of the Latin Squares for a given set of parameters, the problem of finding all the required maps is reduced to finding a small set of maps for M-PSK constellations. This is achieved using the notions of isotopic and transposed Latin Squares. Furthermore, the channel conditions for which the bit-wise XOR will perform well is analytically obtained which holds for all values of M (for M any power of 2). We illustrate these results for the case where both the end users use QPSK constellation.
Resumo:
A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer (t (eff)) and the solder yield strength (sigma (ys,eff)) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t (eff), based on the uniform thickness of IMC (t (u)) and the average height of the IMC scallops (t (s)), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t (eff) that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t (eff), mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.
Resumo:
Cellular signalling events are at the core of every adaptive response. Signalling events link environmental changes to physiological responses, consequently allowing cellular and organismal sustenance and survival. Classical approaches to study cellular signalling have relied on a variety of cell disruptive techniques which yield limited kinetic information, while the underlying events are much more complex. In this article, we discuss how modern live cell imaging microscopy has found increasing utilization in revealing spatio temporal dynamics of various signalling pathways. Utilizing the well studied mitogen-activated protein kinase (MAPK) signalling cascade as a template, the design, construction and utilization of `mobile' (translocation proficient) biosensors, suitable for studying MAPK signalling in living cells are described in detail. Experimental setup and results obtained from these biosensors, based on different proteins involved in the MAPK signalling cascade, have been described along with the setup of a microscope optimal for live cell imaging applications. Utilizing the ability to activate or deactivate signalling pathways using defined activators and specific pharmacological inhibitors, we also show how these sensors can yield unique spatial and temporal kinetic information of signalling in living cells.
Resumo:
The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatiotemporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of similar to 1200 km(3) is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and floodplains of the Amazon basin was, respectively, similar to 230 (similar to 40%) and 210 (similar to 50%) km(3) below the 1993-2007 average. This new 15 year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.
Resumo:
FT-IR (4000-400 cm(-1)) and FT-Raman (4000-200 cm(-1)) spectral measurements on solid 2,6-dichlorobenzonitrile (2,6-DCBN) have been done. The molecular geometry, harmonic vibrational frequencies and bonding features in the ground state have been calculated by density functional theory at the B3LYP/6-311++G (d,p) level. A comparison between the calculated and the experimental results covering the molecular structure has been made. The assignments of the fundamental vibrational modes have been done on the basis of the potential energy distribution (PED). To investigate the influence of intermolecular hydrogen bonding on the geometry, the charge distribution and the vibrational spectrum of 2,6-DCBN; calculations have been done for the monomer as well as the tetramer. The intermolecular interaction energies corrected for basis set superposition error (BSSE) have been calculated using counterpoise method. Based on these results, the correlations between the vibrational modes and the structure of the tetramer have been discussed. Molecular electrostatic potential (MEP) contour map has been plotted in order to predict how different geometries could interact. The Natural Bond Orbital (NBO) analysis has been done for the chemical interpretation of hyperconjugative interactions and electron density transfer between occupied (bonding or lone pair) orbitals to unoccupied (antibonding or Rydberg) orbitals. UV spectrum was measured in methanol solution. The energies and oscillator strengths were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. TD-DFT method has also been used for theoretically studying the hydrogen bonding dynamics by monitoring the spectral shifts of some characteristic vibrational modes involved in the formation of hydrogen bonds in the ground and the first excited state. The C-13 nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge independent atomic orbital (GIAO) method and compared with experimental results. Standard thermodynamic functions have been obtained and changes in thermodynamic properties on going from monomer to tetramer have been presented. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The seismic hazard value of any region depends upon three important components such as probable earthquake location, maximum earthquake magnitude and the attenuation equation. This paper presents a representative way of estimating these three important components considering region specific seismotectonic features. Rupture Based Seismic Hazard Analysis (RBSHA) given by Anbazhagan et al. (2011) is used to determine the probable future earthquake locations. This approach is verified on the earthquake data of Bhuj region. The probable earthquake location for this region is identified considering earthquake data till the year 2000. These identified locations match well with the reported locations after 2000. The further Coimbatore City is selected as the study area to develop a representative seismic hazard map using RBSHA approach and to compare with deterministic seismic hazard analysis. Probable future earthquake zones for Coimbatore are located considering the rupture phenomenon as per energy release theory discussed by Anbazhagan et at (2011). Rupture character of the region has been established by estimating the subsurface rupture length of each source and normalized with respect to the length of the source. Average rupture length of the source with respect to its total length is found to be similar for most of the sources in the region, which is called as the rupture character of the region. Maximum magnitudes of probable zones are estimated considering seismic sources close by and regional rupture character established. Representative GMPEs for the study area have been selected by carrying out efficacy test through an average log likelihood value (LLH) as ranking estimator and considering the Isoseismal map. New seismic hazard map of Coimbatore has been developed using the above regional representative parameters of probable earthquake locations, maximum earthquake magnitude and best suitable GMPEs. The new hazard map gives acceleration values at bedrock for maximum possible earthquakes. These results are compared with deterministic seismic hazard map and recently published probabilistic seismic hazard values. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Bulk Ge15Te85-xIn5Agx glasses are shown to exhibit electrical switching with switching/threshold voltages in the range of 70-120V for a sample thickness of 0.3 mm. Further, the samples exhibit threshold or memory behavior depending on the ON state current. The compositional studies confirm the presence of an intermediate phase in the range 8 <= x <= 16, revealed earlier by thermal studies. Further, SET-RESET studies have been performed by these glasses using a triangular pulse of 6 mA amplitude (for SET) and 21 mA amplitude (for RESET). Raman studies of the samples after the SET and RESET operations reveal that the SET state is a crystalline phase which is obtained by thermal annealing and the RESET state is the glassy state, similar to the as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x = 10, 12, and 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are better suited for phase change memory applications. (C) 2014 AIP Publishing LLC.
Resumo:
Regionalization approaches are widely used in water resources engineering to identify hydrologically homogeneous groups of watersheds that are referred to as regions. Pooled information from sites (depicting watersheds) in a region forms the basis to estimate quantiles associated with hydrological extreme events at ungauged/sparsely gauged sites in the region. Conventional regionalization approaches can be effective when watersheds (data points) corresponding to different regions can be separated using straight lines or linear planes in the space of watershed related attributes. In this paper, a kernel-based Fuzzy c-means (KFCM) clustering approach is presented for use in situations where such linear separation of regions cannot be accomplished. The approach uses kernel-based functions to map the data points from the attribute space to a higher-dimensional space where they can be separated into regions by linear planes. A procedure to determine optimal number of regions with the KFCM approach is suggested. Further, formulations to estimate flood quantiles at ungauged sites with the approach are developed. Effectiveness of the approach is demonstrated through Monte-Carlo simulation experiments and a case study on watersheds in United States. Comparison of results with those based on conventional Fuzzy c-means clustering, Region-of-influence approach and a prior study indicate that KFCM approach outperforms the other approaches in forming regions that are closer to being statistically homogeneous and in estimating flood quantiles at ungauged sites. Key Points
Resumo:
The allowed and the ``disallowed'' regions in the celebrated Ramachandran map (phi-psi] map) was elegantly deduced by Ramachandran, Ramakrishnan and Sasisekharan even before the protein crystal structures became available. This powerful map was derived based on rigid geometry of the peptide group and later several investigations on protein crystal structures reported the occurrence of a small fraction of the phi-psi] torsion angles in the disallowed region. The question is what factors make these residues adopt disallowed conformations? Is it driven by the necessity to maintain the overall topology or is it associated with function or is it just that the disallowed conformations are extreme limits of the allowed conformations? Today, with the availability of a large number of high resolution crystal structures, we have revisited this problem. Apart from validating some of the earlier findings such as residue propensities, preferred location in the secondary structure, we have explored their spatial neighborhood preferences using the protein structure network PSN] approach developed in our lab. Finally, the structural and functional implications of the disallowed conformations are examined.
Resumo:
A regular secondary structure is described by a well defined set of values for the backbone dihedral angles (phi,psi and omega) in a polypeptide chain. However in real protein structures small local variations give rise to distortions from the ideal structures, which can lead to considerable variation in higher order organization. Protein structure analysis and accurate assignment of various structural elements, especially their terminii, are important first step in protein structure prediction and design. Various algorithms are available for assigning secondary structure elements in proteins but some lacunae still exist. In this study, results of a recently developed in-house program ASSP have been compared with those from STRIDE, in identification of alpha-helical regions in both globular and membrane proteins. It is found that, while a combination of hydrogen bond patterns and backbone torsional angles (phi-psi) are generally used to define secondary structure elements, the geometry of the C-alpha atom trace by itself is sufficient to define the parameters of helical structures in proteins. It is also possible to differentiate the various helical structures by their C-alpha trace and identify the deviations occurring both at mid-positions as well as at the terminii of alpha-helices, which often lead to occurrence of 3(10) and pi-helical fragments in both globular and membrane proteins.