969 resultados para Sequence analysis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emiliania huxleyi (Lohm.) Hay and Mohler is a ubiquitous unicellular marine alga surrounded by an elaborate covering of calcite platelets called coccoliths. It is an important primary producer involved in oceanic biogeochemistry and climate regulation. Currently, E. huxleyi is separated into five morphotypes based on morphometric, physiological, biochemical, and immunological differences. However, a genetic marker has yet to be found to characterize these morphotypes. With the use of sequence analysis and denaturing gradient gel electrophoresis, we discovered a genetic marker that correlates significantly with the separation of the most widely recognized A and B morphotypes. Furthermore, we reveal that the A morphotype is composed of a number of distinct genotypes. This marker lies within the 3' untranslated region of a coccolith associated protein mRNA, which is implicated in regulating coccolith calcification. Consequently, we tentatively termed this marker the coccolith morphology motif.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Europe, the last 20 years have seen a spectacular increase in accidental introductions of marine species, but it has recently been suggested that both the actual number of invaders and their impacts have been seriously underestimated because of the prevalence of sibling species in marine habitats. The red alga Polysiphoniaharveyi is regarded as an alien in the British Isles and Atlantic Europe, having appeared in various locations there during the past 170 years. Similar or conspecific populations are known from Atlantic North America and Japan. To choose between three competing hypotheses concerning the origin of P. harveyi in Europe, we employed rbcL sequence analysis in conjunction with karyological and interbreeding data for samples and isolates of P. harveyi and various congeners from the Pacific and North Atlantic Oceans. All cultured isolates of P. harveyi were completely interfertile, and there was no evidence of polyploidy or aneuploidy. Thus, this biological species is both morphologically and genetically variable: intraspecific rbcL divergences of up to 2.1% are high even for red algae. Seven rbcL haplotypes were identified. The four most divergent haplotypes were observed in Japanese samples from Hokkaido and south-central Honshu, which are linked by hypothetical 'missing' haplotypes that may be located in northern Honshu. These data are consistent with Japan being the centre of diversity and origin for P. harveyi. Two non-Japanese lineages were linked to Hokkaido and Honshu, respectively. A single haplotype was found in all North Atlantic and Mediterranean accessions, except for North Carolina, where the haplotype found was the same as that invading in New Zealand and California. The introduction of P. harveyi into New Zealand has gone unnoticed because P. strictissima is a morphologically indistinguishable native sibling species. The sequence divergence between them is 4–5%, greater than between some morphologically distinct red algal species. Two different types of cryptic invasions of P. harveyi have therefore occurred. In addition to its introduction as a cryptic sibling species in New Zealand, P. harveyi has been introduced at least twice into the North Atlantic from presumed different source populations. These two introductions are genetically and probably also physiologically divergent but completely interfertile.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The order Nidovirales comprises viruses from the families Coronaviridae (genera Coronavirus and Torovirus), Roniviridae (genus Okavirus), and Arteriviridae (genus Arterivirus). In this study, we characterized White bream virus (WBV), a bacilliform plus-strand RNA virus isolated from fish. Analysis of the nucleotide sequence, organization, and expression of the 26.6-kb genome provided conclusive evidence for a phylogenetic relationship between WBV and nidoviruses. The polycistronic genome of WBV contains five open reading frames (ORFs), called ORF1a, -1b, -2, -3, and -4. In WBV-infected cells, three subgenomic RNAs expressing the structural proteins S, M, and N were identified. The subgenomic RNAs were revealed to share a 42-nucleotide, 5' leader sequence that is identical to the 5'-terminal genome sequence. The data suggest that a conserved nonanucleotide sequence, CA(G/A)CACUAC, located downstream of the leader and upstream of the structural protein genes acts as the core transcription-regulating sequence element in WBV. Like other nidoviruses with large genomes (>26 kb), WBV encodes in its ORF1b an extensive set of enzymes, including putative polymerase, helicase, ribose methyltransferase, exoribonuclease, and endoribonuclease activities. ORF1a encodes several membrane domains, a putative ADP-ribose 1"-phosphatase, and a chymotrypsin-like serine protease whose activity was established in this study. Comparative sequence analysis revealed that WBV represents a separate cluster of nidoviruses that significantly diverged from toroviruses and, even more, from coronaviruses, roniviruses, and arteriviruses. The study adds to the amazing diversity of nidoviruses and appeals for a more extensive characterization of nonmammalian nidoviruses to better understand the evolution of these largest known RNA viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During recent cruises aboard RV Polarstern in the Antarctic Peninsula region, a new species of benthic octopodid was discovered whose generic affinities based on morphological characteristics were uncertain. Molecular sequence analysis of six mitochondrial and nuclear genes allows this species to be placed with confidence within the genus Pareledone. The species is described herein and morphological diagnostic characters are provided for its identification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphonates are organophosphorus molecules that contain the highly stable C-P bond, rather than the more common, and more labile, C-O-P phosphate ester bond. They have ancient origins but their biosynthesis is widespread among more primitive organisms and their importance in the contemporary biosphere is increasingly recognized; for example phosphonate-P is believed to play a particularly significant role in the productivity of the oceans. The microbial degradation of phosphonates was originally thought to occur only under conditions of phosphate limitation, mediated exclusively by the poorly characterized C-P lyase multienzyme system, under Pho regulon control. However, more recent studies have demonstrated the Pho-independent mineralization by environmental bacteria of three of the most widely distributed biogenic phosphonates: 2-aminoethylphosphonic acid (ciliatine), phosphonoacetic acid, and 2-amino-3-phosphonopropionic acid (phosphonoalanine). The three phosphonohydrolases responsible have unique specificities and are members of separate enzyme superfamilies; their expression is regulated by distinct members of the LysR family of bacterial transcriptional regulators, for each of which the phosphonate substrate of the respective degradative operon serves as coinducer. Previously no organophosphorus compound was known to induce the enzymes required for its own degradation. Whole-genome and metagenome sequence analysis indicates that the genes encoding these newly described C-P hydrolases are distributed widely among prokaryotes. As they are able to function under conditions in which C-P lyases are inactive, the three enzymes may play a hitherto-unrecognized role in phosphonate breakdown in the environment and hence make a significant contribution to global biogeochemical P-cycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Economical breeding is important to obtain maximum gain from the breeding in the animal sector. The economic loss has to be eliminated or should be minimized. The liver fluke, Fasciola hepatica, present mostly in sheep and dairy cattle affect the yield of animals and even cause their death. To eliminate or minimize the impact of these parasites on the animals, it is important to understand the genetic diversity of the liver fluke populations and the relationship between parasite and host at regional bases. This research was carried out to determine diversity by sequence analysis of the mitochondrial ND1 gene and ribosomal ITS1 region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compares conventional and molecular techniques for the detection of fungi in 77 adult cystic fibrosis (CF) patients. Three different methods were investigated, i.e., (1) conventional microbiological culture (including yeasts and filamentous fungi), (2) mycological culture with CF-derived fungal specific culture media, and (3) Non-culture and direct DNA extraction from patient sputa. Fungi isolated from environmental air samples of the CF unit were compared to fungi in sputa from CF patients. Fungi (n = 107) were detected in 14/77(18%) of patients by method 1, in 60/77 (78%) of patients by method 2 and with method 3, in 77/77(100%) of the patients. The majority of yeasts isolated were Candida albicans and C. dubliniensis. Exophiala (Wangiella) dermatitidis, Scedosporiumapiospermum, Penicillium spp., Aspergillus fumigatus, and Aspergillus versicolor were also identified by sequence analysis of the rDNA short internal transcribed spacer (ITS2) region. Conventional laboratory analysis failed to detect fungi in 63 patients mainly due to overgrowth by Gram-negative organisms. Mycological culture with antibiotics dramatically increased the number of fungi that could be detected. Molecular techniques detected fungi such as Saccharomyces cerevisiae, Malassezia spp., Fuscoporia ferrea, Fusarium culmorum, Acremonium strictum, Thanatephorus cucumeris and Cladosporium spp. which were not found with other methods. This study demonstrates that several potentially important fungi may not be detected if mycological culture methods alone are used. A polyphasic approach employing both enhanced mycological culture with molecular detection will help determine the presence of fungi in the sputa of patients with CF and their healthcare environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of functional nidovirus replication-transcription complexes involves extensive proteolytic processing by virus-encoded proteases. In this study, we characterized the viral main protease (Mpro) of the type species, White bream virus (WBV), of the newly established genus Bafinivirus (order Nidovirales, family Coronaviridae, subfamily Torovirinae). Comparative sequence analysis and mutagenesis data confirmed that the WBV Mpro is a picornavirus 3C-like serine protease that uses a Ser-His-Asp catalytic triad embedded in a predicted two-ß-barrel fold, which is extended by a third domain at its C terminus. Bacterially expressed WBV Mpro autocatalytically released itself from flanking sequences and was able to mediate proteolytic processing in trans. Using N-terminal sequencing of autoproteolytic processing products we tentatively identified Gln?(Ala, Thr) as a substrate consensus sequence. Mutagenesis data provided evidence to suggest that two conserved His and Thr residues are part of the S1 subsite of the enzyme's substrate-binding pocket. Interestingly, we observed two N-proximal and two C-proximal autoprocessing sites in the bacterial expression system. The detection of two major forms of Mpro, resulting from processing at two different N-proximal and one C-proximal site, in WBV-infected epithelioma papulosum cyprini cells confirmed the biological relevance of the biochemical data obtained in heterologous expression systems. To our knowledge, the use of alternative Mpro autoprocessing sites has not been described previously for other nidovirus Mpro domains. The data presented in this study lend further support to our previous conclusion that bafiniviruses represent a distinct group of viruses that significantly diverged from other phylogenetic clusters of the order Nidovirales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Identification of the structural domains of proteins is important for our understanding of the organizational principles and mechanisms of protein folding, and for insights into protein function and evolution. Algorithmic methods of dissecting protein of known structure into domains developed so far are based on an examination of multiple geometrical, physical and topological features. Successful as many of these approaches are, they employ a lot of heuristics, and it is not clear whether they illuminate any deep underlying principles of protein domain organization. Other well-performing domain dissection methods rely on comparative sequence analysis. These methods are applicable to sequences with known and unknown structure alike, and their success highlights a fundamental principle of protein modularity, but this does not directly improve our understanding of protein spatial structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PLZF/RARA fusion protein generated by the t(11;17)(q23;q21) translocation in acute promyelocytic leukaemia (APL) is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear. We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gastric cancer is a major cause of global cancer mortality. We surveyed the spectrum of somatic alterations in gastric cancer by sequencing the exomes of 15 gastric adenocarcinomas and their matched normal DNAs. Frequently mutated genes in the adenocarcinomas included TP53 (11/15 tumors), PIK3CA (3/15) and ARID1A (3/15). Cell adhesion was the most enriched biological pathway among the frequently mutated genes. A prevalence screening confirmed mutations in FAT4, a cadherin family gene, in 5% of gastric cancers (6/110) and FAT4 genomic deletions in 4% (3/83) of gastric tumors. Frequent mutations in chromatin remodeling genes (ARID1A, MLL3 and MLL) also occurred in 47% of the gastric cancers. We detected ARID1A mutations in 8% of tumors (9/110), which were associated with concurrent PIK3CA mutations and microsatellite instability. In functional assays, we observed both FAT4 and ARID1A to exert tumor-suppressor activity. Somatic inactivation of FAT4 and ARID1A may thus be key tumorigenic events in a subset of gastric cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the ß-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A specimen of emollient cream, which was observed to be contaminated peripherally with a filamentous fungus was examined for the presence of fungi and the resulting fungal colonies were examined phenotypically and genotypically. Subsequent DNA extraction and PCR amplification of the large internal transcribed spacer region [ITS1-5.8S-ITS2] yielded an amplicon of 512 bp. Sequence analysis identified this as Alternaria alternata at the 100% homology level with all 512/512 bases called. This organism has been previously reported as a cause of opportunistic infections involving skin and immunocompromised patients. This is the first report of an emollient cream as a source of this organism. It highlights the need for proper management of such preparations in order to minimize the potential spread of fungi to susceptible patient populations.