897 resultados para Sensory modifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies found larger attentional modulation of acoustic blinks during task-relevant than during task-irrelevant acoustic or visual, but not tactile, lead stimuli. Moreover, blink modulation was larger overall during acoustic lead stimuli. The present experiment investigated whether these results reflect modality specificity of attentional blink modulation or effects of continuous stimulation. Participants performed a discrimination and counting task with acoustic, visual, or tactile lead stimuli. Stimuli were presented Sustained or consisted of two short discrete stimuli. The sustained condition replicated previous results. In the discrete condition, blinks were larger during task-relevant than during task-irrelevant stimuli in all groups regardless of lead stimulus modality. Thus, previous results that seemed consistent with modality-specific accounts of attentional blink modulation reflect effects of continuous stimulus input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypersensitivity to a variety of sensory Stimuli is a feature of persistent whiplash associated disorders (WAD). However, little is known about sensory disturbances from the time Of injury until transition to either recovery or symptom persistence. Quantitative sensory testing (pressure and thermal pain thresholds, the brachial plexus provocation test), the sympathetic vasoconstrictor reflex and psychological distress (GHQ-28) were prospectively measured in 76 whiplash Subjects within 1 month of injury and then 2, 3 and 6 months post-injury. Subjects were classified at 6 months post-injury using scores on the Neck Disability Index: recovered (30). Sensory and sympathetic nervous system tests were also measured in 20 control subjects. All whiplash groups demonstrated local mechanical hyperalgesia in the cervica spine at 1 month post-injury. This hyperalgesia persisted in those with moderate/severe symptoms at 6 months but resolved by 2 months in those who had recovered or reported persistent mild symptoms. Only those with persistent moderate/severe symptoms at 6 months demonstrated generalised hypersensitivity to all sensory tests. These changes Occurred within 1 month of injury and remained Unchanged throughout the Study period. Whilst no significant group differences were evident for the sympathetic vasoconstrictor response, the moderate/severe group showed a tendency for diminished sympathetic reactivity. GHQ-28 scores of the moderate/severe group were higher than those of the other two groups. The differences in GHQ-28 did not impact on any of the sensory measures. These findings suggest that those with persistent moderate/severe symptoms at 6 months display, soon after injury, generalised hypersensitivity suggestive of changes in central pain processing mechanisms. This phenomenon did not Occur in those who recover or those with persistent mild symptoms. (C) 2003 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (SI), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus SI cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This thunder-and-lightning system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomaintype transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a coreceptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The muO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na+ current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na+ currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the muO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small beta-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone loops between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known delta- and omega-conotoxins, which along with the muO-conotoxins are members of the O superfamily. Loop 2 of omega-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary olfactory neurons situated in the nasal septum project axons within fascicles along a highly stereotypical trajectory en route to the olfactory bulb. The ventral fascicles make a distinct dorsovental turn at the rear of the septum so as to reach the olfactory bulb. In the present study we have used a brain and nasal septum coculture system to examine the role of target tissue on the peripheral trajectory of olfactory sensory axons. In cultures of isolated embryonic nasal septa, olfactory axons form numerous parallel fascicles that project caudally in the submucosa, as they do in vivo. The ventral axon fascicles in the septum, however, often fail to turn, and do not project dorsally towards the roof of the nasal cavity. The presence of olfactory bulb, cortical, or tectal tissue apposed to the caudal end of the septum rescued this phenotype, causing the ventral fascicles to follow a normal in vivo-like trajectory. Ectopic placements of the explants revealed that brain tissue is not tropic for olfactory axons but appears to maintain the peripheral trajectory of growing axons in the nasal septum. Although primary olfactory axons are able to penetrate into olfactory bulb in vitro, they only superficially enter cortical tissue, whereas they do not grow into tectal explants. The ability of axons to differentially grow into different brain regions was shown to be unrelated to the migratory behavior of olfactory ensheathing cells, indicating that olfactory axons are directly responsive to guidance cues in the brain. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have revealed systematic differences in the pyramidal cell structure between functionally related cortical areas of primates. Trends for a parallel in pyramidal cell structure and functional complexity have been reported in visual, somatosensory, motor, cingulate and prefrontal cortex in the macaque monkey cortex. These specializations in structure have been interpreted as being fundamental in determining cellular and systems function, endowing circuits in these different cortical areas with different computational power. In the present study we extend our initial finding of systematic specialization of pyramidal cell structure in sensory-motor cortex in the macaque monkey [Cereb Cortex 12 (2002) 1071] to the vervet monkey. More specifically, we investigated pyramidal cell structure in somatosensory and motor areas 1/2, 5, 7, 4 and 6. Neurones in fixed, flat-mounted, cortical slices were injected intracellularly with Lucifer Yellow and processed for a light-stable 3,3'-diaminobenzidine reaction product. The size of, number of branches in, and spine density of the basal dendritic arbors varied systematically such that there was a trend for increasing complexity in arbor structure with progression through 1/2, 5 and 7. In addition, cells in area 6 were larger, more branched, and more spinous than those in area 4. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.