982 resultados para Secretory phospholipase A2 (sPLA2)
Resumo:
Toxocara vitulorum is a nematode parasite of the small intestine of cattle and water buffalo, particularly buffalo calves between one and three months of age, causing high morbidity and mortality. The purpose of this research was to characterize the excretory/secretory (ES) antigens of T vitulorum larvae by SDS-polyacrylamide gel electrophoresis (PAGE) and Western blot (WB), using immune sera and colostrum of buffalo naturally infected by T vitulorum. The parasitological status of the buffalo calves was also evaluated using sequential fecal examinations. The results showed that the ES antigen revealed eight (190, 150, 110, 90, 64, 56, 48, and 19 kDa) protein bands by SDS-PAGE. The majority of these bands were recognized in the sera and colostrum of infected buffalo with T vitulorum when analyzed by WB. However, particularly fractions of high molecular weight (190, 150, 110, and 90 kDa) were represented in more prominent bands and persisted in the groups of buffalo calves at the peak of egg output, as well as during the period of rejection of T vitulorum by the feces of the calves. During the period of post-rejection of the worms (between the day 118 and 210 of age) the serum antibodies did not react with any protein bands. on the other hand, sera from buffalo calves at one day of age (after suckling the colostrum and at the beginning of infection) reacted with the same bands detected in the serum and colostrum of the buffalo cows.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cell lysis in the formation of secretory cavities in plants has been questioned by some authors and considered as result of technical artifacts. To describe the formation of secretory resin cavities in Hymenaea stigonocarpa leaves, leaflet samples at different stages of differentiation were collected, fixed, and processed for light and electron microscopy as per usual methods. The initial cells of secretory resin cavities are protodermal and grow towards the mesophyll ground meristem; these cells then divide producing cell groups that are distinguished by the shape and arrangement of cytoplasm, and density. At the initial stages of differentiation of the secretory cavities, some central cells in these groups show dark cytoplasm and condensed nuclear chromatin. Later, there is cell wall loosening, tonoplast and plasmalemma rupture resulting in cell death. These cells, however, maintain organelle integrity until lysis, when the cell wall degrades and the plasmalemma ruptures, releasing protoplast residues, marked characteristics of programmed cell death. The secretory epithelium remains active until complete leaf expansion when the cavity is filled with resin and the secretory activity ceases. There are no wall residues between central cells in adult cavities. Our results demonstrate lysigeny and the importance of ontogenetic studies in determining the origin of secretory cavities.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aqueous extract of Casearia sylvestris (Flacourtiaceae) has been shown to inhibit enzymatic and biological properties of some Bothrops and Crotalus venoms and their purified phospholipase A(2) (PLA(2)) toxins. In this work we evaluated the influence of C sylvestris aqueous extract upon neuromuscular blocking and muscle damaging activities of some PLA(2)S (crotoxin from C. durissus terrificus, bothropstoxin-I from B.jararacussu, piratoxin-I from B. pirajai and myotoxin-II from B. moojeni) in mouse phrenic-diaphragm preparations. Crotoxin (0.5 mu M) and all other PLA2 toxins (1.0 mu M) induced irreversible and time-dependent blockade of twitches. Except for crotoxin, all PLA2 toxins induced significant muscle damage indices, assessed by microscopic analysis. Preincubation of bothropstoxin-I, piratoxin-I or myotoxin-II with C. sylvestris extract (1:5 (w/w), 30 min, 37 degrees C significantly prevented the neuromuscular blockade of preparations exposed to the mixtures for 90 min; the extent of protection ranged from 93% to 97%. The vegetal extract also neutralized the muscle damage (protection of 80-95%). Higher concentration of the C. sylvestris extract (1: 10, w/w) was necessary to neutralize by 90% the neuromuscular blockade induced by crotoxin. These findings expanded the spectrum of C. sylvestris antivenom activities, evidencing that it may be a good source of potentially useful PLA2 inhibitors. (c) 2007 Elsevier B.V.. All rights reserved.
Resumo:
Lys49-Phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. With the aim of determining the structural basis for this novel activity, we have solved the crystal structure of myotoxin-II, a Lys49-PLA(2) isolated from the venom of Cerrophidion (Bothrops) godmani (godMT-II) at 2.8 Angstrom resolution by molecular replacement. The final model has been refined to a final crystallografic residual (R-factor) of 18.8% (R-free = 28.2%), with excellent stereochemistry. godMT-II is also monomeric in the crystalline state, and small-angle X-ray scattering results demonstrate that the protein is monomeric in solution under fisicochemical conditions similar to those used in the crystallographic studies. (C) 1999 Academic Press.
Resumo:
MjTX-II, a myotoxic phospholipase A(2) (PLA(2)) homologue from Bothrops moojeni venom, was functionally and structurally characterized. The MjTX-II characterization included: (i) functional characterization (antitumoral, antimicrobial and antiparasitic effects); (ii) effects of structural modifications by 4-bromophenacyl bromide (BPB), cyanogen bromide (CNBr), acetic anhydride and 2-nitrobenzenesulphonyl fluoride (NBSF); (iii) enzymatic characterization: inhibition by low molecular weight heparin and EDTA; and (iv) molecular characterization: cDNA sequence and molecular structure prediction. The results demonstrated that MjTX-II displayed antimicrobial activity by growth inhibition against Escherichia coli and Candida albicans, antitumoral activity against Erlich ascitic tumor (EAT), human breast adenocarcinoma (SK-BR-3) and human T leukemia cells (JURKAT) and antiparasitic effects against Schistosoma mansoni and Leishmania spp., which makes MjTX-II a promising molecular model for future therapeutic applications, as well as other multifunctional homologous Lys49-PLA(2)S or even derived peptides. This work provides useful insights into the structural determinants of the action of Lys49-PLA2 homologues and, together with additional strategies, supports the concept of the presence of others bioactive sites distinct from the catalytic site in snake venom myotoxic PLA(2)s. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Crystals of a myotoxic phospholipase A(2) from Bothrops neuwiedi pauloensis have been obtained. They diffracted at 2.5 Angstrom resolution using a synchrotron radiation source and belong to space group P3(1)21. Preliminary analysis shows that there are two molecules in the asymmetric unit. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
BnSP-7, a Lys49 myotoxic phospholipase A, homologue from Bothrops neuwiedi pauloensis venom, was structurally and functionally characterized. Several biological activities were assayed and compared with those of the chemically modified toxin involving specific amino acid residues, the cDNA produced from the total RNA by RT-PCR contained approximately 400 bp which codified its 121 amino acid residues with a calculated pi and molecular weight of 8.9 and 13,727, respectively. Its amino acid sequence showed strong similarities with several Lys49 phospholipase A, homologues from other Bothrops sp, venoms. By affinity chromatography and gel diffusion, it was demonstrated that heparin formed a complex with BnSP-7, held at least in part by electrostatic interactions. BnSP-7 displayed bactericidal activity and promoted the blockage of the neuromuscular contraction of the chick, biventer cervicis muscle. In addition to its in vivo myotoxic and edema-inducing activity, it disrupted artificial membranes, Both BnSP-7 and the crude venom released creatine kinase from the mouse gastrocnemius muscle and induced the development of a dose-dependent edema. His, Tyr, and Lys residues of the toxin were chemically modified by 4-bromophhenacyl bromide (BPB), 2-nitrobenzenesulfonyl fluoride (NBSF), and acetic anhydride (AA), respectively. Cleavage of its N-terminal octapeptide was achieved with cyanogen bromide (CNBr), the bactericidal action of BnSP-7 on Escherichia coli was almost completely abolished by acetylation or cleavage of the N-terminal octapeptide, the neuromuscular effect induced by BnSP-7 was completely inhibited by heparin, BPB, acetylation, and CNBr treatment. The creatine kinase releasing and edema-inducing effects were partially inhibited by heparin or modification by BPB and almost completely abolished by acetylation or cleavage of the N-terminal octapeptide, the rupture of liposomes by BnSP-7 and crude venom was dose and temperature dependent. Incubation of BnSP-7 with EDTA did not change this effect, suggesting a Ca2+-independent membrane lytic activity. BnSP-7 cross-reacted with antibodies raised against B. moojeni (MjTX-II), B. jararacussu (BthTX-I), and B. asper (Basp-II) myotoxins as well as against the C-terminal peptide (residues 115-129) from Basp-II. (C) 2000 Academic Press.
Resumo:
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Phospholipases A(2) constitute the major components from Bothrops snake venoms and have been extensively investigated not only because they are relatively very abundant in these venoms but mainly because they display a range of many relevant biological effects, including: myotoxic, cytotoxic, edema-inducing, artificial membrane disrupting, anticoagulant, neuromuscular, platelet aggregation inhibiting, hypotensive, bactericidal, anti-HIV, anti-tumoural, anti-malarial and anti-parasitic. The primary structures of several PLA(2)s have been elucidated through direct amino acid sequencing or, inderectly, through the corresponding nucleotide sequencing. Two main subgroups were thus described: (i) Asp49 PLA(2)s, showing low (basic, highly myotoxic) to relatively high (acidic, less or non myotoxic) Ca++-dependent hydrolytic activity upon artificial substrates; (ii) Lys49 PLA(2)s (basic, highly myotoxic) , showing no detectable hydrolytic activity on artificial substrates. Several crystal structures of Lys49 PLAs from genus Bothrops have already been solved, revealing very similar fold patterns. Lack of catalytic activity of myotoxic Lys49-PLA(2)s, first related solely with the fact that Lys49 occupies the position of the calcium ion in the catalyticly active site of Asp49 PLA(2)s, is now also attributed to Lys122 which interacts with the carbonyl of Cys29 hyperpolarising the peptide bond between Cys29 and Gly30 and trapping the fatty acid product in the active site, thus interrupting the catalytic cycle. This hypothesis, supported for three recent structures, is also discussed here. All Asp49 myotoxins showed to be pharmacologically more potent when compared with the Lys49 variants, but phospholipid hydrolysis is not an indispensable condition for the myotoxic, cytotoxic, bactericidal, anti-HIV, anti-parasitic, liposome disrupting or edema-inducing activities. Recent studies on site directed mutagenesis of the recombinant Lys49 myotoxin from Bothrops jararacussu revealed the participation of important amino acid residues in the membrane damaging and myotoxic activities.