923 resultados para Search Engine Optimization Methods
Resumo:
SOMS is a general surrogate-based multistart algorithm, which is used in combination with any local optimizer to find global optima for computationally expensive functions with multiple local minima. SOMS differs from previous multistart methods in that a surrogate approximation is used by the multistart algorithm to help reduce the number of function evaluations necessary to identify the most promising points from which to start each nonlinear programming local search. SOMS’s numerical results are compared with four well-known methods, namely, Multi-Level Single Linkage (MLSL), MATLAB’s MultiStart, MATLAB’s GlobalSearch, and GLOBAL. In addition, we propose a class of wavy test functions that mimic the wavy nature of objective functions arising in many black-box simulations. Extensive comparisons of algorithms on the wavy testfunctions and on earlier standard global-optimization test functions are done for a total of 19 different test problems. The numerical results indicate that SOMS performs favorably in comparison to alternative methods and does especially well on wavy functions when the number of function evaluations allowed is limited.
Resumo:
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.
Are Job Networks Localized in a Developing Economy? Search Methods for Displaced Workers in Thailand
Resumo:
Effects of localized personal networks on the choice of search methods are studied in this paper using evidence of displaced workers by establishment closure in Thailand Labor Force Survey, 2001. For the blocks/villages level, there is less significant evidence of local interactions between job-seekers and referrals in developing labor markets. The effects of localized personal networks do not play an important role in the probability of unemployed job-seekers seeking assistance from friends and relatives. Convincing evidence from the data supports the proposition that both self-selection of individual background-like professions and access to large markets determine the choice of job search method.
Resumo:
The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.
Resumo:
In this paper a summary of the methods presently used for optimization of prestressed concrete bridge decks is given. By means of linear optimization the sizes of the prestressing cables with a given fixed geometry are obtained. This simple procedure of linear optimization is also used to obtain the ‘best’ cable profile, by combining a series of feasible cable profiles. The results are compared with the ones obtained by other researchers. A step ahead in the field of optimization of prestressed bridge decks is the simultaneous search of the geometry and size of the prestressing cables. A non-linear programming for optimization is used, namely, ‘the steepest gradient method’. The results obtained are compared with the ones computed previously by means of linear programming techniques. Finally, the general problem of structural optimization is considered. This problem consists in finding the sizes and geometries of the prestressing cables as well as the longitudinal variation of the concrete section.
Resumo:
Las futuras misiones para misiles aire-aire operando dentro de la atmósfera requieren la interceptación de blancos a mayores velocidades y más maniobrables, incluyendo los esperados vehículos aéreos de combate no tripulados. La intercepción tiene que lograrse desde cualquier ángulo de lanzamiento. Una de las principales discusiones en la tecnología de misiles en la actualidad es cómo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a través de mejoras en los métodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultáneamente, al proponer un diseño integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinámico simultáneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseño integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando únicamente control aerodinámico. El diseño propuesto se compara favorablemente con esquemas más tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrará cómo la introducción del doble mando, donde tanto el canard como las aletas de cola son móviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere sólo introducir dos servos adicionales para accionar los canards también en guiñada y cabeceo. La sección de cola será responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicación añadida es que los vórtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus características de control. Como un primer aporte, se ha desarrollado un modelo analítico completo para la aerodinámica no lineal de un misil con doble control, incluyendo la caracterización de este efecto de acoplamiento aerodinámico. Hay dos modos de funcionamiento en picado y guiñada para un misil de doble mando: ”desviación” y ”opuesto”. En modo ”desviación”, los controles actúan en la misma dirección, generando un cambio inmediato en la sustentación y produciendo un movimiento de translación en el misil. La respuesta es rápida, pero en el modo ”desviación” los misiles con doble control pueden tener dificultades para alcanzar grandes ángulos de ataque y altas aceleraciones laterales. Cuando los controles actúan en direcciones opuestas, el misil rota y el ángulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinámico completo, es posible obtener una parametrización dependiente de los estados de la dinámica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los límites aerodinámicos o mecánicos del misil. Una segunda contribución de la tesis es el desarrollo de un autopiloto con múltiples entradas de control y que integra la aerodinámica no lineal, controlando los tres canales de picado, guiñada y cabeceo de forma simultánea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integración mediante la resolución de una ecuación de Riccati de orden 21x21. Las ganancias obtenidas son sub-óptimas, debido a que una solución completa de la ecuación de Hamilton-Jacobi-Bellman no puede obtenerse de manera práctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimización, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentación directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mínima característica de la cola. En esta Tesis se consideran dos diseños para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximación de Doble-Lazo, el autopiloto se sitúa dentro de un bucle interior y se diseña independientemente del guiado, que conforma el bucle más exterior del control. Esta estructura asume que existe separación espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos característicos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado óptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptación, cuando se lanza cerca del curso de colisión, se consigue desde cualquier ángulo alrededor del blanco. Para el misil de doble mando, la estrategia óptima resulta en utilizar el modo de control opuesto en la aproximación al blanco y utilizar el modo de desviación justo antes del impacto. Sin embargo la lógica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisión. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleración lateral, y no tiene control sobre su aceleración axial, a no ser que incorpore un motor de empuje regulable. La hipótesis de separación mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinámica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un único bucle, la información de los estados del misil está disponible para el cálculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribución de la Tesis es la resolución de este segundo diseño, la integración no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiñada. Las simplificaciones que se tomaron también causan que el misil se deslice alrededor del blanco y no consiga la intercepción. En nuestra aproximación el problema se plantea en ejes inerciales y se recurre a la dinámica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinámica de corto periodo del misil, porque se construye incluyendo de modo explícito la velocidad dentro del bucle de optimización. La formulación resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el cálculo del modelo en Doble-bucle. Un típico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posición del misil y saturan el controlador, provocando la pérdida del misil. Este problema se ha tratado aquí con un controlador aumentado previo al bucle de optimización, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemático resultante es muy complejo. El problema óptimo para tiempo finito resulta en una ecuación diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introducción de una matriz de transición, este problema se transforma en una ecuación diferencial de Lyapunov que puede resolverse mediante métodos numéricos. La solución resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solución aproximada basada en la solución de una ecuación algebraica de Riccati para cada paso de integración. Los resultados que se han obtenido demuestran, a través de análisis numéricos en distintos escenarios, que la solución integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsión, consiguiendo la interceptación del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y además requiere un orden menos de magnitud en la cantidad de cálculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es más robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el núcleo de optimización en el IGA es independiente de la maniobra del blanco. La estimación de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisión de la solución de Doble-Bucle. Finalmente, como una cuarta contribución, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, sólo con control aerodinámico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones técnicamente más complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemáticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Aránguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, ”divert” and ”opposite” modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an λ-shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.
Resumo:
In the maximum parsimony (MP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and A for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the ML tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.
Resumo:
Speech recognition involves three processes: extraction of acoustic indices from the speech signal, estimation of the probability that the observed index string was caused by a hypothesized utterance segment, and determination of the recognized utterance via a search among hypothesized alternatives. This paper is not concerned with the first process. Estimation of the probability of an index string involves a model of index production by any given utterance segment (e.g., a word). Hidden Markov models (HMMs) are used for this purpose [Makhoul, J. & Schwartz, R. (1995) Proc. Natl. Acad. Sci. USA 92, 9956-9963]. Their parameters are state transition probabilities and output probability distributions associated with the transitions. The Baum algorithm that obtains the values of these parameters from speech data via their successive reestimation will be described in this paper. The recognizer wishes to find the most probable utterance that could have caused the observed acoustic index string. That probability is the product of two factors: the probability that the utterance will produce the string and the probability that the speaker will wish to produce the utterance (the language model probability). Even if the vocabulary size is moderate, it is impossible to search for the utterance exhaustively. One practical algorithm is described [Viterbi, A. J. (1967) IEEE Trans. Inf. Theory IT-13, 260-267] that, given the index string, has a high likelihood of finding the most probable utterance.
Resumo:
Thesis--Illinois.
Resumo:
Mode of access: Internet.
Resumo:
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.
Resumo:
When composing stock portfolios, managers frequently choose among hundreds of stocks. The stocks' risk properties are analyzed with statistical tools, and managers try to combine these to meet the investors' risk profiles. A recently developed tool for performing such optimization is called full-scale optimization (FSO). This methodology is very flexible for investor preferences, but because of computational limitations it has until now been infeasible to use when many stocks are considered. We apply the artificial intelligence technique of differential evolution to solve FSO-type stock selection problems of 97 assets. Differential evolution finds the optimal solutions by self-learning from randomly drawn candidate solutions. We show that this search technique makes large scale problem computationally feasible and that the solutions retrieved are stable. The study also gives further merit to the FSO technique, as it shows that the solutions suit investor risk profiles better than portfolios retrieved from traditional methods.
Resumo:
This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.
In the second essay, “A Framework for Estimating Persistence of Local Labor
Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.
In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.
Resumo:
This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.
Resumo:
Adjoint methods have proven to be an efficient way of calculating the gradient of an objective function with respect to a shape parameter for optimisation, with a computational cost nearly independent of the number of the design variables [1]. The approach in this paper links the adjoint surface sensitivities (gradient of objective function with respect to the surface movement) with the parametric design velocities (movement of the surface due to a CAD parameter perturbation) in order to compute the gradient of the objective function with respect to CAD variables.
For a successful implementation of shape optimization strategies in practical industrial cases, the choice of design variables or parameterisation scheme used for the model to be optimized plays a vital role. Where the goal is to base the optimization on a CAD model the choices are to use a NURBS geometry generated from CAD modelling software, where the position of the NURBS control points are the optimisation variables [2] or to use the feature based CAD model with all of the construction history to preserve the design intent [3]. The main advantage of using the feature based model is that the optimized model produced can be directly used for the downstream applications including manufacturing and process planning.
This paper presents an approach for optimization based on the feature based CAD model, which uses CAD parameters defining the features in the model geometry as the design variables. In order to capture the CAD surface movement with respect to the change in design variable, the “Parametric Design Velocity” is calculated, which is defined as the movement of the CAD model boundary in the normal direction due to a change in the parameter value.
The approach presented here for calculating the design velocities represents an advancement in terms of capability and robustness of that described by Robinson et al. [3]. The process can be easily integrated to most industrial optimisation workflows and is immune to the topology and labelling issues highlighted by other CAD based optimisation processes. It considers every continuous (“real value”) parameter type as an optimisation variable, and it can be adapted to work with any CAD modelling software, as long as it has an API which provides access to the values of the parameters which control the model shape and allows the model geometry to be exported. To calculate the movement of the boundary the methodology employs finite differences on the shape of the 3D CAD models before and after the parameter perturbation. The implementation procedure includes calculating the geometrical movement along a normal direction between two discrete representations of the original and perturbed geometry respectively. Parametric design velocities can then be directly linked with adjoint surface sensitivities to extract the gradients to use in a gradient-based optimization algorithm.
The optimisation of a flow optimisation problem is presented, in which the power dissipation of the flow in an automotive air duct is to be reduced by changing the parameters of the CAD geometry created in CATIA V5. The flow sensitivities are computed with the continuous adjoint method for a laminar and turbulent flow [4] and are combined with the parametric design velocities to compute the cost function gradients. A line-search algorithm is then used to update the design variables and proceed further with optimisation process.