962 resultados para Salt water intrusion
Resumo:
We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.
Resumo:
A dynamic systems simulation model of water resources was developed as a tool to help analyze alternatives to water resources management for the Piracicaba, Capivari and Jundiai River Water Basins (RB-PCJ), and used to run six 50-year simulations from 2004 to 2054. The model estimates water supply and demand, as well as contamination load by several consumers. Six runs were performed using a constant mean precipitation value, changing water supply and demand and different volumes diverted from RB-PCJ to RB-Alto Tiet. For the Business as Usual scenario, the Sustainability Index went from 0.44 in 2004 to 0.20 by 2054. The Water Sustainability Index changed from 74% in 2004 to 131% by 2054. The Falkenmark Index changed from 1,403 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2004 to 734 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) by 2054. We concluded that sanitation is one of the major problems for the PCJ River Basins.
Resumo:
The Piracicaba, Capivari, and Jundiai River Basins (RB-PCJ) are mainly located in the State of So Paulo, Brazil. Using a dynamics systems simulation model (WRM-PCJ) to assess water resources sustainability, five 50-year simulations were run. WRM-PCJ was developed as a tool to aid decision and policy makers on the RB-PCJ Watershed Committee. The model has 254 variables. The model was calibrated and validated using available information from the 80s. Falkenmark Water Stress Index went from 1,403 m(3) person (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2004 to 734 m(3) P (-aEuro parts per thousand 1) year (-aEuro parts per thousand 1) in 2054, and Xu Sustainability Index from 0.44 to 0.20. In 2004, the Keller River Basin Development Phase was Conservation, and by 2054 was Augmentation. The three criteria used to evaluate water resources showed that the watershed is at crucial water resources management turning point. The WRM-PCJ performed well, and it proved to be an excellent tool for decision and policy makers at RB-PCJ.
Resumo:
Using a dynamic systems model specifically developed for Piracicaba, Capivari and Jundia River Water Basins (BH-PCJ) as a tool to help to analyze water resources management alternatives for policy makers and decision takers, five simulations for 50 years timeframe were performed. The model estimates water supply and demand, as well as wastewater generation from the consumers at BH-PCJ. A run was performed using mean precipitation value constant, and keeping the actual water supply and demand rates, the business as usual scenario. Under these considerations, it is expected an increment of about similar to 76% on water demand, that similar to 39% of available water volume will come from wastewater reuse, and that waste load increases to similar to 91%. Falkenmark Index will change from 1,403 m(3) person(-1) year(-1) in 2004, to 734 m(3) P(-1) year(-1) by 2054, and the Sustainability Index from 0.44 to 0.20. Another four simulations were performed by affecting the annual precipitation by 90 and 110%; considering an ecological flow equal to 30% of the mean daily flow; and keeping the same rates for all other factors except for ecological flow and household water consumption. All of them showed a tendency to a water crisis in the near future at BH-PCJ.
Resumo:
Hydrological models featuring root water uptake usually do not include compensation mechanisms such that reductions in uptake from dry layers are compensated by an increase in uptake from wetter layers. We developed a physically based root water uptake model with an implicit compensation mechanism. Based on an expression for the matric flux potential (M) as a function of the distance to the root, and assuming a depth-independent value of M at the root surface, uptake per layer is shown to be a function of layer bulk M, root surface M, and a weighting factor that depends on root length density and root radius. Actual transpiration can be calculated from the sum of layer uptake rates. The proposed reduction function (PRF) was built into the SWAP model, and predictions were compared to those made with the Feddes reduction function (FRF). Simulation results were tested against data from Canada (continuous spring wheat [(Triticum aestivum L.]) and Germany (spring wheat, winter barley [Hordeum vulgare L.], sugarbeet [Beta vulgaris L.], winter wheat rotation). For the Canadian data, the root mean square error of prediction (RMSEP) for water content in the upper soil layers was very similar for FRF and PRF; for the deeper layers, RMSEP was smaller for PRF. For the German data, RMSEP was lower for PRF in the upper layers and was similar for both models in the deeper layers. In conclusion, but dependent on the properties of the data sets available for testing,the incorporation of the new reduction function into SWAP was successful, providing new capabilities for simulating compensated root water uptake without increasing the number of input parameters or degrading model performance.
Resumo:
Nowadays, the rising competition for the use of water and environmental resources with consequent restrictions for farmers should change the paradigm in terms of irrigation concepts, or rather, in order to attain economical efficiency other than to supply water requirement for the crop. Therefore, taking into account the social and economical role of bean activity in Brazil, as well as the risk inherent to crop due to its high sensibility to both deficit and excessive water, the optimization methods regarding to irrigation management have become more interesting and essential. This study intends to present a way to determine the optimal water supply, considering different combinations between desired bean yield and level of risk, bringing as a result a graph with the former associated with the latter, depending on different water depths.
Resumo:
Simulation of irrigated Thanzania grass growth based on photothermal units, nitrogen fertilization and water availability. The mathematical model to predict the forage yield using photothennal units was utilized with success in Elephant grass, Thanzania and Brachiaria niziziensis in the absence of water stress and nitrogen stress. The aim of this study was to propose models to estimate the forage yield of Thanzania grass under different irrigation (25, 50,75, 100 e 125% of ETc) and nitrogen level in various regions of Brazil. As such, models were developed to estimate the dry matter production of Panicum maximum Jacq. frass cv Thanzania in different irrigation and nitrogen levels, using photothermal units. The models were adjusted to doses of 0, 30, 60, 110 and 270 kg of N ha(-1), doses were divided in applications after each evaluation, with a rest cycle of 35 days. The adjusted model presented good performance in predicting dry matter production of Thanzania grass, with r(2) = 0.9999. The results made it possible to verify that the proposed model can be used to predict forage production in different regions of Brazil. It can be estimated, with good precision. The production of Thanzania grass dry matter can be accurately estimated in specific places (in function of latitude and time of year), with the maximum and minimum temperature values.
Resumo:
Due to its wide industrial use, chromium (Cr) is considered a serious environmental pollutant of aquatic bodies. in order to investigate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to Cr treatment, plants were exposed to 1 and 10 mM Cr(2)O(3) (Cr(3+)) and K(2)Cr(2)O(7) (Cr(6+)) concentrations for two or 4 days in a hydroponic system. Plants exposed to the higher concentration of Cr(6+) for 4 days did not survive, whereas a 2 days treatment with 1 mM Cr(3+) apparently stimulated growth. Analysis of Cr uptake indicated that most of the Cr accumulated in the roots, but some was also translocated and accumulated in the leaves. However, in plants exposed to Cr(6+) (1 mM), a higher translocation of Cr from roots to shoots was observed. it is possible that the conversion from Cr(6+) to Cr(3+), which immobilizes Cr in roots, was not total due to the presence of Cr(6+), causing deleterious effects on gas exchange, chlorophyll a fluorescence and photosynthetic pigment contents. Chlorophyll a was more sensitive to Cr than chlorophyll b. Cr(3+) was shown to be less toxic than Cr(6+) and, in some cases even increased photosynthesis and chlorophyll content. This result indicated that the F(v)/F(0) ratio was more effective than the F(v)/F(m) ratio in monitoring the development of stress by Cr(6+). There was a linear relationship between qP and F(v)/F(m). No statistical differences were observed in NPQ and chlorophyll a/b ratio, but there was a tendency to decrease these values with Cr exposure. This suggests that there were alterations in thylakoid stacking, which might explain the data obtained for gas exchanges and other chlorophyll a fluorescence parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential M(I) showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.
Resumo:
The climatic water balance is one of the most used tools to assess, indirectly the amount of water present in the soil is capable of meeting the water needs of the plant. This study analyzed the climatologic hydric balance, the effective soil water storage and coffee plant transpiration in dry regimen cultivation. Daily climatologic hydric balance was calculated for coffee from January 2003 to May 2006. It was concluded that even in the most rainy months of the year, there is a hydric deficit in coffee plants grown in a dry regimen; effective soil water storage varied greatly through the years evaluated, and September was the most critical month, when this value remained below 30%; relative transpiration can not be taken as the single evaluation method for yield losses of coffee, grown in a dry regimen.
Resumo:
The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, Sao Paulo State) and from three Spanish salt marshes (Betanzos Ria and Corrubedo Natural Parks, Galicia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The chemical variation was larger in SOM from the Spanish marshes than in the SOM of the Brazilian mangroves, possibly because the marshes included sites with both tidal and nontidal variation, whereas the mangrove forest underwent just tidal variation. Thus, plant-derived organic matter was better preserved under permanently anoxic environments. Moreover, given the low number of studied profiles and sedimentary-vegetation sequences in both areas, depth trends remain unclear. The chemical data also allow distinction between the contributions of woody and nonwoody vegetation inputs. Soil organic matter decomposition was found to cause: (i) a decrease in lignin contents and a relative increase in aliphatics; (ii) an increase in short-chain aliphatics at the expense of longer ones; (iii) a loss of odd-over-even dominance in alkanes and alkenes; and (iv) an increase in microbial products, including proteins, sterols, short-chain fatty acids, and alkanes. Pyrolysis-gas chromatography/mass spectrometry is a useful tool to study the behavior and composition of SOM in wetland environments such as mangroves and salt marshes. Additional profiles need to be studied for each vegetation type, however, to improve the interpretability of the chemical data.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS (13)C NMR spectroscopy. HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general. an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new laboratory method was proposed to establish an easily performed standard for the determination of mobile soil water close to real conditions during the infiltration and redistribution of water in a soil. It consisted of applying a water volume with a tracer ion on top of an undisturbed ring sample on a pressure plate under a known suction or pressure head. Afterwards, soil water mobility was determined by analyzing the tracer-ion concentration in the soil sample. Soil water mobility showed to be a function of the applied water volume. No relation between soil water mobility and applied pressure head could be established with data from the present experiment. A simple one- or two-parameter equation can be fitted to the experimental data to parameterize soil water mobility as a function of applied solute volume. Sandy soils showed higher mobility than loamy soils at low values of applied solute volumes, and both sandy and loamy soils showed an almost complete mobility at high applied solute volumes.