832 resultados para Salt marsh and semi-arid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sample of Pulmonata collected in Santa Maria da Vitória, interior of Bahia, Brazil, in Caatinga semi-arid environment, is studied taxonomically. From the five species, four are revealed as new, including a new genus. The new taxa are the Bulimulidae (1) Kora corallina gen. et sp. n. characterized by the elongated shell with aperture somewhat dislocated from the shell axis, and an oblique tooth in middle level of inner lip; (2) Spixia coltrorum, mainly characterized by an uneven spire, delicate sculpture and peristome with 4 equidistant teeth; (3) Anostoma tessa, mainly characterized by a broad spire and well-developed anal canal; and the Megalobulimidae (4) Megalobulimus amandus, mainly characterized by pointed protoconch sculptured by dense quantity of axial cords. Rhinus suturalis is the only previously known species, but its geographic distribution is expanded southwards to Bahia state. A discussion with respect to necessity for improving the study on the malacofauna from the interior region of the Brazilian Northeast and the importance for preservation of the Caatinga biome is also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Eritrea findet eine rasche Verbreitung von Prosopis (juliflora) statt, die sich negativ auf die Naturresourcen als auch die sozio-ökonomische Lage der ländlichen Bevölkerung auswirkt. Die Landbevölkerung Eritrea's ist davon überzeugt, dass die Pflanze vor allem die Ernährungssicherung beeinträchtigt und will deshalb, dass sie ausgerottet wird. Die vorliegende Dissertation beschreibt die Auswirkung von Posopis auf lokale Öko- und Wirtschaftssysteme und zieht Vergleiche mit der diesbezüglichen Situation in anderen Ländern. Im Weiteren stellt sie einen Prosopis Management-Plan vor, dessen Ziel es ist, die zunehmende Verbreitung zu verhindern. Auch liefert sie eine Gegenüberstellung der Ansichten von wissenschaftlichen Experten einerseits und Bauern und Nomaden andrerseits. Sie zeigt auf, dass die weit verbreitete Annahme der Experten das Problem Prosopis durch ökonomische Nutzung ("eradication by utilisation") in Schach halten zu können, fraglich ist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol particles are important actors in the Earth’s atmosphere and climate system. They scatter and absorb sunlight, serve as nuclei for water droplets and ice crystals in clouds and precipitation, and are a subject of concern for public health. Atmospheric aerosols originate from both natural and anthropogenic sources, and emissions resulting from human activities have the potential to influence the hydrological cycle and climate. An assessment of the extent and impacts of this human force requires a sound understanding of the natural aerosol background. This dissertation addresses the composition, properties, and atmospheric cycling of biogenic aerosol particles, which represent a major fraction of the natural aerosol burden. The main focal points are: (i) Studies of the autofluo-rescence of primary biological aerosol particles (PBAP) and its application in ambient measure-ments, and (ii) X-ray microscopic and spectroscopic investigations of biogenic secondary organic aerosols (SOA) from the Amazonian rainforest.rnAutofluorescence of biological material has received increasing attention in atmospheric science because it allows real-time monitoring of PBAP in ambient air, however it is associated with high uncertainty. This work aims at reducing the uncertainty through a comprehensive characterization of the autofluorescence properties of relevant biological materials. Fluorescence spectroscopy and microscopy were applied to analyze the fluorescence signatures of pure biological fluorophores, potential non-biological interferences, and various types of reference PBAP. Characteristic features and fingerprint patterns were found and provide support for the operation, interpretation, and further development of PBAP autofluorescence measurements. Online fluorescence detection and offline fluorescence microscopy were jointly applied in a comprehensive bioaerosol field measurement campaign that provided unprecedented insights into PBAP-linked biosphere-atmosphere interactions in a North-American semi-arid forest environment. Rain showers were found to trigger massive bursts of PBAP, including high concentrations of biological ice nucleators that may promote further precipitation and can be regarded as part of a bioprecipitation feedback cycle in the climate system. rnIn the pristine tropical rainforest air of the Amazon, most cloud and fog droplets form on bio-genic SOA particles, but the composition, morphology, mixing state and origin of these particles is hardly known. X-ray microscopy and spectroscopy (STXM-NEXAFS) revealed distinctly different types of secondary organic matter (carboxyl- vs. hydroxy-rich) with internal structures that indicate a strong influence of phase segregation, cloud and fog processing on SOA formation, and aging. In addition, nanometer-sized potassium-rich particles emitted by microorganisms and vegetation were found to act as seeds for the condensation of SOA. Thus, the influence of forest biota on the atmospheric abundance of cloud condensation nuclei appears to be more direct than previously assumed. Overall, the results of this dissertation suggest that biogenic aerosols, clouds and precipitation are indeed tightly coupled through a bioprecipitation cycle, and that advanced microscopic and spectroscopic techniques can provide detailed insights into these mechanisms.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reconstruction of the human past is a complex task characterized by a high level of interdisciplinarity. How do scientists from different fields reach consensus on crucial aspects of paleoanthropological research? The present paper explores this question through an historical analysis of the origin, development, and reception of the savannah hypotheses (SHs). We show that this model neglected to investigate crucial biological aspects which appeared to be irrelevant in scenarios depicting early hominins evolving in arid or semi-arid open plains. For instance, the exploitation of aquatic food resources and other aspects of hominin interaction with water were largely ignored in classical paleoanthropology. These topics became central to alternative ideas on human evolution known as aquatic hypotheses. Since the aquatic model is commonly regarded as highly controversial, its rejection led to a stigmatization of the whole spectrum of topics around water use in non-human hominoids and hominins. We argue that this bias represents a serious hindrance to a comprehensive reconstruction of the human past. Progress in this field depends on clear differentiation between hypotheses proposed to contextualize early hominin evolution in specific environmental settings and research topics which demand the investigation of all relevant facets of early hominins' interaction with complex landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agroforestry parklands represent a vast majority of the agricultural landscape under subsistent-oriented farming in semi-arid West Africa. Parklands are characterized by the growth of well- maintained trees (e.g., shea) on cultivated fields as a result of both environmental and human influences. Shea (Vitellaria paradoxa) provides a cultural and economic benefit to the local people of Ghana, especially women. Periods between traditional fallow rotation systems have reduced recently due to agricultural development and a demand for higher production. As a result, shea trees, which regenerate during fallow periods, has decreased over the landscape. The aim of this study was to determine beneficial spatial distributions of V. paradoxa to maintain high yields of staple crops, and how management of V. paradoxa will differ between male and female farmers as a result of farmer based needs and use of shea. Vegetation growth and grain yield of maize (Zea mays) associated with individual trees, clumped trees, and open fields were measured. Soil moisture and light availability were also measured to determine how V. paradoxa affected resource availability of maize in either clumped or scattered distributions of V. paradoxa. As expected, light availability increased as measurement locations moved farther away from all trees. However, soil moisture was actually greater under trees in clumps than under individual trees. Maize stalk height and cob length showed no difference between clumped and single trees at each measurement location. Grain yield per plot and per cob increased as measurement locations moved farther from single trees, but was actually greater near clumped trees that in the open field subplots. Cob length and maize stalk height increased with greater light availability, but grain yield per cob or per plot showed no relationship with light, but were not affected by soil moisture. Conversely, grain yield increased with increasing soil moisture, but had no relationship with light availability. Initial farming capital is the largest constraint to female farmers; therefore the collection of shea can help provide women with added income that could meet their specific farming needs. Our data indicate that overall effects of maintaining clumped distributions of V. paradoxa provided beneficial microclimates for staple crops when compared to single trees. It is recommended that male and female farmers allow shea to grow in clumped spatial distributions rather than maintaining scattered, individual trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Paleozoic Cutler Formation, where exposed near the modern-day town of Gateway, Colorado, has traditionally been interpreted as the product of alluvial fan deposition within the easternmost portion of the Paradox Basin. The Paradox Basin formed between the western margin of the Uncompahgre Uplift segment of the Ancestral Rocky Mountains and the western paleoshoreline of the North American portion of Pangea. The Paradox Basin region is commonly thought to have experienced semi-arid to arid conditions and warm temperatures during the Pennsylvanian and Permian. Evidence described in this paper support prior interpretations regarding paleoclimate conditions and the inferred depositional environment for the Cutler Formation near Gateway, Colorado. Plant fossils collected from the late Paleozoic Cutler Formation in The Palisade Wilderness Study Area (managed by the U.S. Department of the Interior, Bureau of Land Management) of western Colorado include Calamites, Walchia, Pecopteris, and many calamitean fragments. The flora collected is interpreted to have lived in an arid or semi-arid environment that included wet areas of limited areal extent located near the apex of an alluvial fan system. Palynological analysis of samples collected revealed the presence of the common Pennsylvanian palynomorphs Thymospora pseudothiessenii and Lophotriletes microsaetosus. These fossils suggest that warm and at least seasonally and locally wet conditions existed in the area during the time that the plants were growing. All evidence of late Paleozoic plant life collected during this study was found along the western margin of the Uncompahgre Uplift segment of the Ancestral Rocky Mountains. During the late Paleozoic, sediment was eroded from the Uncompahgre Uplift and deposited in the adjacent Paradox Basin. The preservation of plant fossils in the most proximal parts of the Paradox Basin is remarkable due to the fact that much of the proximal Cutler Formation consists of conglomerates and sandstones deposited as debris flow and by fluvial systems. The plants must have grown in a protected setting, possibly an abandoned channel on the alluvial fan, and been rapidly buried in the subsiding Paradox Basin. It is likely that there was abundant vegetation in and adjacent to low-lying wet areas at the time the Cutler Formation was deposited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semi-arid ecosystems play an important role in regulating global climate with the fate of these ecosystems in the Anthropocene depending upon interactions among temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. Interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This study evaluates recent trends in productivity and phenology of Inner Asian forests (in Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Trends in photosynthetically active radiation fraction (FPAR) between 1982 and 2010 show a greening of about 7% of the region in spring (March, April, May), and 3% of the area ‘browning’ during summertime (June, July, August). These satellite observations of FPAR are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and possibly even greater forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover. The fate of these semi-arid ecosystems thus appears to hinge upon the magnitude and subtleties of CO2 fertilization effects, for which experimental observations in arid systems are needed to test and refine vegetation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world's longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how organisms control soil water dynamics is a major research goal in dryland ecology. Although previous studies have mostly focused on the role of vascular plants on the hydrological cycle of drylands, recent studies highlight the importance of biological soil crusts formed by lichens, mosses, and cyanobacteria (biocrusts) as a major player in this cycle. We used data from a 6.5-year study to evaluate how multiple abiotic (rainfall characteristics, temperature, and initial soil moisture) and biotic (vascular plants and biocrusts) factors interact to determine wetting and drying processes in a semi-arid grassland from Central Spain. We found that the shrub Retama sphaerocarpa and biocrusts with medium cover (25–75%) enhanced water gain and slowed drying compared with bare ground areas (BSCl). Well-developed biocrusts (>75% cover) gained more water, but lost it faster than BSCl microsites. The grass Stipa tenacissima reduced water gain due to rainfall interception, but increased soil moisture retention compared to BSCl microsites. Biotic modulation of water dynamics was the result of different mechanisms acting in tandem and often in opposite directions. For instance, biocrusts promoted an exponential behavior during the first stage of the drying curve, but reduced the importance of soil characteristics that accentuate drying rates. Biocrust-dominated microsites gained a similar amount of water than vascular plants, although they lost it faster than vascular plants during dry periods. Our results emphasize the importance of biocrusts for water dynamics in drylands, and illustrate the potential mechanisms behind their effects. They will help to further advance theoretical and modeling efforts on the hydrology of drylands and their response to ongoing climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analysed how woody vegetation of differing cover affects plant diversity (richness and evenness) and the surrogates of multiple ecosystem processes (multifunctionality) in global drylands, and how these change with aridity. Location Two hundred and twenty-four dryland sites from all continents except Antarctica, widely differing in their environmental conditions (from arid to dry-subhumid sites) and relative woody cover (from 0 to 100). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 soil variables related to fertility and the build-up of nutrient pools. These variables are critical for maintaining ecosystem functioning in drylands. Results Species richness and ecosystem multifunctionality were strongly related to woody vegetation, with both variables peaking at a relative woody cover (RWC) of 41–60. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC–diversity and multifunctionality relationships under semi-arid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive in wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of levels of woody cover and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in the current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Native trees and shrubs are essential components of rural landscapes in the semi-arid inner-Andean valleys of Bolivia. They can be found as hedges and bushes in various agroecosystems such as terrace walls, slopes, field boundaries and fallow land. Their distribution and floristic composition are the result of dynamic spatial and temporal interactions between local farmers and the environment. Local uses of natural resources and biodiversity reflect the constantly evolving Andean culture, which can be generally characterised as an intertwining of the human, natural, and spiritual worlds. The aim of the present ethnobotanical study was to analyse the dynamics of traditional ecological knowledge, to ascertain local farmers’ perceptions and uses of native woody species in Andean communities and to associate the results with local conservation activities for the trees and shrubs concerned. Our case study was carried out within two communities of the Tunari National Park (Dept. Cochabamba) in Bolivia. For data collection, research methods from social science (semi-structured interviews, participative observation, participatory mapping) as well as vegetation surveys were combined. Local actors included women and men of all ages as well as families from different social categories and altitudinal levels of permanent residence. Our study indicates that, due to a multitude of socio-economic pressures (e.g. migration of young people) as well as changes in use of biodiversity (e.g. replacement of native by exotic introduced species), the traditional ecological knowledge base of native trees and shrubs and their respective uses has become diminished over time. In many cases it has led to a decline in people’s awareness of native species and as a consequence their practical, emotional and spiritual relationships with them have been lost. However, results also show that applied traditional ecological knowledge has led to local conservation strategies, which have succeeded in protecting those tree and shrub species which are most widely regarded for their multifunctional, constant and exclusive uses (e.g. Schinus molle, Prosopis laevigata, Baccharis dracunculifolia). The presentation will discuss the question if and how applied traditional ecological knowledge positively contributes to local initiatives of sustainable use and conservation of biodiversity in rural areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land and water management in semi-arid regions requires detailed information on precipitation distribution, including extremes, and changes therein. Such information is often lacking. This paper describes statistics of mean and extreme precipitation in a unique data set from the Mount Kenya region, encompassing around 50 stations with at least 30 years of data. We describe the data set, including quality control procedures and statistical break detection. Trends in mean precipitation and extreme indices calculated from these data for individual rainy seasons are compared with corresponding trends in reanalysis products. From 1979 to 2011, mean precipitation decreased at 75% of the stations during the ‘long rains’ (March to May) and increased at 70% of the stations during the ‘short rains’ (October to December). Corresponding trends are found in the number of heavy precipitation days, and maximum of consecutive 5-day precipitation. Conversely, an increase in consecutive dry days within both main rainy seasons is found. However, trends are only statistically significant in very few cases. Reanalysis data sets agree with observations with respect to interannual variability, while correlations are considerably lower for monthly deviations (ratios) from the mean annual cycle. While some products well reproduce the rainfall climatology and some the spatial trend pattern, no product reproduces both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5°S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38°S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36°S appears to be best suited for turbidite paleoseismology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siwalik paleosol and Bengal Fan sediment samples were analyzed for the abundance and isotopic composition of n-alkanes in order to test for molecular evidence of the expansion of C4 grasslands on the Indian subcontinent. The carbon isotopic compositions of high-molecular-weight alkanes in both the ancient soils and sediments record a shift from low d13C values (ca. -30 per mil) to higher values (ca. -22 per mil) prior to 6 Ma. This shift is similar in magnitude to that recorded by paleosol carbonate and fossil teeth, and is consistent with a relatively rapid transition from dominantly C3 vegetation to an ecosystem dominated by C4 plants typical of semi-arid grasslands. The n-alkane values from our paleosol samples indicate that the isotopic change began as early as 9 Ma, reflecting either a growing contribution of C4 plants to a dominantly C3 biomass or a decrease in water availability to C3 plants. Molecular and isotopic analyses of other compounds, including n-alcohols and low-molecular weight n-alkanes indicate paleosol organic matter contains contributions from a mixture of sources, including vascular plants, algae and/or cyanobacteria and microorganisms. A range of inputs is likewise reflected in the isotopic composition of the total organic carbon from these samples. In addition, the n-alkanes from two samples show little evidence for pedegenic inputs and we suggest the compounds were derived instead from the paleosol's parent materials. We suggest the record of vegetation in ancient terrestrial ecosystems is better reconstructed using isotopic signatures of molecular markers, rather than bulk organic carbon. This approach provides a means of expanding the spatial and temporal records of C4 plant biomass which will help to resolve possible tectonic, climatic or biological controls on the rise of this important component of the terrestrial biosphere.